1. CMB 2014 (vol 58 pp. 158)
2. CMB 2014 (vol 58 pp. 7)
 Boulabiar, Karim

Characters on $C(X)$
The precise condition on a completely regular space $X$ for every character on
$C(X) $ to be an evaluation at some point in $X$ is that $X$ be
realcompact. Usually, this classical result is obtained relying heavily on
involved (and even nonconstructive) extension arguments. This note provides a
direct proof that is accessible to a large audience.
Keywords:characters, realcompact, evaluation, realvalued continuous functions Categories:54C30, 46E25 

3. CMB 2013 (vol 57 pp. 821)
 Jeong, Imsoon; Kim, Seonhui; Suh, Young Jin

Real Hypersurfaces in Complex TwoPlane Grassmannians with Reeb Parallel Structure Jacobi Operator
In this paper we give a characterization of a real hypersurface of
Type~$(A)$ in complex twoplane Grassmannians ${ { {G_2({\mathbb
C}^{m+2})} } }$, which means a
tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in
${G_2({\mathbb C}^{m+2})}$, by
the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.
Keywords:real hypersurfaces, complex twoplane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator Categories:53C40, 53C15 

4. CMB 2012 (vol 56 pp. 640)
 Türkmen, İnan Utku

Regulator Indecomposable Cycles on a Product of Elliptic Curves
We provide a novel proof of the existence
of regulator indecomposables in the cycle group $CH^2(X,1)$,
where $X$ is a sufficiently general product of two elliptic
curves. In particular, the nature of our proof provides an illustration of
Beilinson rigidity.
Keywords:real regulator, regulator indecomposable, higher Chow group, indecomposable cycle Category:14C25 

5. CMB 2011 (vol 56 pp. 306)
6. CMB 2011 (vol 55 pp. 752)
7. CMB 2011 (vol 55 pp. 611)
 Özgür, Cihan; Mihai, Adela

Chen Inequalities for Submanifolds of Real Space Forms with a SemiSymmetric NonMetric Connection
In this paper we prove Chen inequalities for submanifolds of real space
forms endowed with a semisymmetric nonmetric connection, i.e., relations
between the mean curvature associated with a semisymmetric nonmetric
connection, scalar and sectional curvatures, Ricci curvatures and the
sectional curvature of the ambient space. The equality cases are considered.
Keywords:real space form, semisymmetric nonmetric connection, Ricci curvature Categories:53C40, 53B05, 53B15 

8. CMB 2011 (vol 55 pp. 114)
9. CMB 2011 (vol 54 pp. 422)
10. CMB 2011 (vol 54 pp. 593)
 Boersema, Jeffrey L.; Ruiz, Efren

Stability of Real $C^*$Algebras
We will give a characterization of stable real $C^*$algebras
analogous to the one given for complex $C^*$algebras by Hjelmborg
and RÃ¸rdam. Using this result, we will prove
that any real $C^*$algebra satisfying the corona factorization
property is stable if and only if its complexification is stable.
Real $C^*$algebras satisfying the corona factorization property
include AFalgebras and purely infinite $C^*$algebras. We will also
provide an example of a simple unstable $C^*$algebra, the
complexification of which is stable.
Keywords:stability, real C*algebras Category:46L05 

11. CMB 2009 (vol 53 pp. 51)
12. CMB 2009 (vol 52 pp. 39)
 Cimpri\v{c}, Jakob

A Representation Theorem for Archimedean Quadratic Modules on $*$Rings
We present a new approach to noncommutative real algebraic geometry
based on the representation theory of $C^\ast$algebras.
An important result in commutative real algebraic geometry is
Jacobi's representation theorem for archimedean quadratic modules
on commutative rings.
We show that this theorem is a consequence of the
GelfandNaimark representation theorem for commutative $C^\ast$algebras.
A noncommutative version of GelfandNaimark theory was studied by
I. Fujimoto. We use his results to generalize
Jacobi's theorem to associative rings with involution.
Keywords:Ordered rings with involution, $C^\ast$algebras and their representations, noncommutative convexity theory, real algebraic geometry Categories:16W80, 46L05, 46L89, 14P99 

13. CMB 2008 (vol 51 pp. 359)
14. CMB 2005 (vol 48 pp. 561)
 Foth, Philip

A Note on Lagrangian Loci of Quotients
We study Hamiltonian actions of compact groups in the presence of
compatible involutions. We show that the Lagrangian fixed point set
on the symplectically reduced space is isomorphic to the disjoint
union of the involutively reduced spaces corresponding to
involutions on the group strongly inner to the given one.
Our techniques imply that the solution to the eigenvalues of a sum problem
for a given real form can be reduced to the quasisplit real form in the
same inner class. We also consider invariant quotients with respect to
the corresponding real form of the complexified group.
Keywords:Quotients, involutions, real forms, Lagrangian loci Category:53D20 

15. CMB 2005 (vol 48 pp. 121)
16. CMB 1999 (vol 42 pp. 274)
 Dădărlat, Marius; Eilers, Søren

The Bockstein Map is Necessary
We construct two nonisomorphic nuclear, stably finite,
real rank zero $C^\ast$algebras $E$ and $E'$ for which
there is an isomorphism of ordered groups
$\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to
\bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible
with all the coefficient transformations. The $C^\ast$algebras
$E$ and $E'$ are not isomorphic since there is no $\Theta$
as above which is also compatible with the Bockstein operations.
By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair
of nonisomorphic, real rank zero, purely infinite $C^\ast$algebras
with similar properties.
Keywords:$K$theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$algebras, real rank zero, purely infinite, classification Categories:46L35, 46L80, 19K14 
