1. CMB 2011 (vol 55 pp. 842)
2. CMB 2011 (vol 55 pp. 26)
 Bertin, Marie José

A Mahler Measure of a $K3$ Surface Expressed as a Dirichlet $L$Series
We present another example of a $3$variable polynomial defining a $K3$hypersurface
and having a logarithmic Mahler measure expressed in terms of a Dirichlet
$L$series.
Keywords:modular Mahler measure, EisensteinKronecker series, $L$series of $K3$surfaces, $l$adic representations, LivnÃ© criterion, RankinCohen brackets Categories:11, 14D, 14J 

3. CMB 2010 (vol 53 pp. 661)
4. CMB 2003 (vol 46 pp. 388)
 Lin, Huaxin

Tracially Quasidiagonal Extensions
It is known that a unital simple $C^*$algebra $A$ with tracial
topological rank zero has real rank zero. We show in this note that,
in general, there are unital $C^*$algebras with tracial topological
rank zero that have real rank other than zero.
Let $0\to J\to E\to A\to 0$ be a short exact sequence of
$C^*$algebras. Suppose that $J$ and $A$ have tracial topological
rank zero. It is known that $E$ has tracial topological rank zero
as a $C^*$algebra if and only if $E$ is tracially quasidiagonal
as an extension. We present an example of a tracially
quasidiagonal extension which is not quasidiagonal.
Keywords:tracially quasidiagonal extensions, tracial rank Categories:46L05, 46L80 

5. CMB 2003 (vol 46 pp. 130)
 Petersen, Peter; Wilhelm, Frederick

On Frankel's Theorem
In this paper we show that two minimal hypersurfaces in a manifold with
positive Ricci curvature must intersect. This is then generalized to show
that in manifolds with positive Ricci curvature in the integral sense two
minimal hypersurfaces must be close to each other. We also show
what happens if a manifold with nonnegative Ricci curvature admits
two nonintersecting minimal hypersurfaces.
Keywords:Frankel's Theorem Category:53C20 

6. CMB 1999 (vol 42 pp. 274)
 Dădărlat, Marius; Eilers, Søren

The Bockstein Map is Necessary
We construct two nonisomorphic nuclear, stably finite,
real rank zero $C^\ast$algebras $E$ and $E'$ for which
there is an isomorphism of ordered groups
$\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to
\bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible
with all the coefficient transformations. The $C^\ast$algebras
$E$ and $E'$ are not isomorphic since there is no $\Theta$
as above which is also compatible with the Bockstein operations.
By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair
of nonisomorphic, real rank zero, purely infinite $C^\ast$algebras
with similar properties.
Keywords:$K$theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$algebras, real rank zero, purely infinite, classification Categories:46L35, 46L80, 19K14 
