Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword rank

  Expand all        Collapse all Results 1 - 8 of 8

1. CMB Online first

Le Fourn, Samuel
Nonvanishing of central values of $L$-functions of newforms in $S_2 (\Gamma_0 (dp^2))$ twisted by quadratic characters
We prove that for $d \in \{ 2,3,5,7,13 \}$ and $K$ a quadratic (or rational) field of discriminant $D$ and Dirichlet character $\chi$, if a prime $p$ is large enough compared to $D$, there is a newform $f \in S_2(\Gamma_0(dp^2))$ with sign $(+1)$ with respect to the Atkin-Lehner involution $w_{p^2}$ such that $L(f \otimes \chi,1) \neq 0$. This result is obtained through an estimate of a weighted sum of twists of $L$-functions which generalises a result of Ellenberg. It relies on the approximate functional equation for the $L$-functions $L(f \otimes \chi, \cdot)$ and a Petersson trace formula restricted to Atkin-Lehner eigenspaces. An application of this nonvanishing theorem will be given in terms of existence of rank zero quotients of some twisted jacobians, which generalises a result of Darmon and Merel.

Keywords:nonvanishing of $L$-functions of modular forms, Petersson trace formula, rank zero quotients of jacobians
Categories:14J15, 11F67

2. CMB 2016 (vol 59 pp. 311)

Ilten, Nathan; Teitler, Zach
Product Ranks of the $3\times 3$ Determinant and Permanent
We show that the product rank of the $3 \times 3$ determinant $\det_3$ is $5$, and the product rank of the $3 \times 3$ permanent $\operatorname{perm}_3$ is $4$. As a corollary, we obtain that the tensor rank of $\det_3$ is $5$ and the tensor rank of $\operatorname{perm}_3$ is $4$. We show moreover that the border product rank of $\operatorname{perm}_n$ is larger than $n$ for any $n\geq 3$.

Keywords:product rank, tensor rank, determinant, permanent, Fano schemes
Categories:15A21, 15A69, 14M12, 14N15

3. CMB 2011 (vol 55 pp. 842)

Sairaiji, Fumio; Yamauchi, Takuya
The Rank of Jacobian Varieties over the Maximal Abelian Extensions of Number Fields: Towards the Frey-Jarden Conjecture
Frey and Jarden asked if any abelian variety over a number field $K$ has the infinite Mordell-Weil rank over the maximal abelian extension $K^{\operatorname{ab}}$. In this paper, we give an affirmative answer to their conjecture for the Jacobian variety of any smooth projective curve $C$ over $K$ such that $\sharp C(K^{\operatorname{ab}})=\infty$ and for any abelian variety of $\operatorname{GL}_2$-type with trivial character.

Keywords:Mordell-Weil rank, Jacobian varieties, Frey-Jarden conjecture, abelian points
Categories:11G05, 11D25, 14G25, 14K07

4. CMB 2011 (vol 55 pp. 26)

Bertin, Marie José
A Mahler Measure of a $K3$ Surface Expressed as a Dirichlet $L$-Series
We present another example of a $3$-variable polynomial defining a $K3$-hypersurface and having a logarithmic Mahler measure expressed in terms of a Dirichlet $L$-series.

Keywords:modular Mahler measure, Eisenstein-Kronecker series, $L$-series of $K3$-surfaces, $l$-adic representations, Livné criterion, Rankin-Cohen brackets
Categories:11, 14D, 14J

5. CMB 2010 (vol 53 pp. 661)

Johnstone, Jennifer A.; Spearman, Blair K.
Congruent Number Elliptic Curves with Rank at Least Three
We give an infinite family of congruent number elliptic curves each with rank at least three.

Keywords:congruent number, elliptic curve, rank

6. CMB 2003 (vol 46 pp. 388)

Lin, Huaxin
Tracially Quasidiagonal Extensions
It is known that a unital simple $C^*$-algebra $A$ with tracial topological rank zero has real rank zero. We show in this note that, in general, there are unital $C^*$-algebras with tracial topological rank zero that have real rank other than zero. Let $0\to J\to E\to A\to 0$ be a short exact sequence of $C^*$-algebras. Suppose that $J$ and $A$ have tracial topological rank zero. It is known that $E$ has tracial topological rank zero as a $C^*$-algebra if and only if $E$ is tracially quasidiagonal as an extension. We present an example of a tracially quasidiagonal extension which is not quasidiagonal.

Keywords:tracially quasidiagonal extensions, tracial rank
Categories:46L05, 46L80

7. CMB 2003 (vol 46 pp. 130)

Petersen, Peter; Wilhelm, Frederick
On Frankel's Theorem
In this paper we show that two minimal hypersurfaces in a manifold with positive Ricci curvature must intersect. This is then generalized to show that in manifolds with positive Ricci curvature in the integral sense two minimal hypersurfaces must be close to each other. We also show what happens if a manifold with nonnegative Ricci curvature admits two nonintersecting minimal hypersurfaces.

Keywords:Frankel's Theorem

8. CMB 1999 (vol 42 pp. 274)

Dădărlat, Marius; Eilers, Søren
The Bockstein Map is Necessary
We construct two non-isomorphic nuclear, stably finite, real rank zero $C^\ast$-algebras $E$ and $E'$ for which there is an isomorphism of ordered groups $\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to \bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible with all the coefficient transformations. The $C^\ast$-algebras $E$ and $E'$ are not isomorphic since there is no $\Theta$ as above which is also compatible with the Bockstein operations. By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair of non-isomorphic, real rank zero, purely infinite $C^\ast$-algebras with similar properties.

Keywords:$K$-theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$-algebras, real rank zero, purely infinite, classification
Categories:46L35, 46L80, 19K14

© Canadian Mathematical Society, 2016 :