Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword quasicontinuity

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2015 (vol 58 pp. 808)

Liu, Feng; Wu, Huoxiong
On the Regularity of the Multisublinear Maximal Functions
This paper is concerned with the study of the regularity for the multisublinear maximal operator. It is proved that the multisublinear maximal operator is bounded on first-order Sobolev spaces. Moreover, two key point-wise inequalities for the partial derivatives of the multisublinear maximal functions are established. As an application, the quasi-continuity on the multisublinear maximal function is also obtained.

Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuity
Categories:42B25, 46E35

2. CMB 2011 (vol 56 pp. 55)

Bouziad, A.
Cliquishness and Quasicontinuity of Two-Variable Maps
We study the existence of continuity points for mappings $f\colon X\times Y\to Z$ whose $x$-sections $Y\ni y\to f(x,y)\in Z$ are fragmentable and $y$-sections $X\ni x\to f(x,y)\in Z$ are quasicontinuous, where $X$ is a Baire space and $Z$ is a metric space. For the factor $Y$, we consider two infinite ``point-picking'' games $G_1(y)$ and $G_2(y)$ defined respectively for each $y\in Y$ as follows: in the $n$-th inning, Player I gives a dense set $D_n\subset Y$, respectively, a dense open set $D_n\subset Y$. Then Player II picks a point $y_n\in D_n$; II wins if $y$ is in the closure of ${\{y_n:n\in\mathbb N\}}$, otherwise I wins. It is shown that (i) $f$ is cliquish if II has a winning strategy in $G_1(y)$ for every $y\in Y$, and (ii) $ f$ is quasicontinuous if the $x$-sections of $f$ are continuous and the set of $y\in Y$ such that II has a winning strategy in $G_2(y)$ is dense in $Y$. Item (i) extends substantially a result of Debs and item (ii) indicates that the problem of Talagrand on separately continuous maps has a positive answer for a wide class of ``small'' compact spaces.

Keywords:cliquishness, fragmentability, joint continuity, point-picking game, quasicontinuity, separate continuity, two variable maps
Categories:54C05, 54C08, 54B10, 91A05

© Canadian Mathematical Society, 2015 :