CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword power series

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB 2013 (vol 56 pp. 673)

Ayadi, K.; Hbaib, M.; Mahjoub, F.
Diophantine Approximation for Certain Algebraic Formal Power Series in Positive Characteristic
In this paper, we study rational approximations for certain algebraic power series over a finite field. We obtain results for irrational elements of strictly positive degree satisfying an equation of the type \begin{equation} \alpha=\displaystyle\frac{A\alpha^{q}+B}{C\alpha^{q}} \end{equation} where $(A, B, C)\in (\mathbb{F}_{q}[X])^{2}\times\mathbb{F}_{q}^{\star}[X]$. In particular, we will give, under some conditions on the polynomials $A$, $B$ and $C$, well approximated elements satisfying this equation.

Keywords:diophantine approximation, formal power series, continued fraction
Categories:11J61, 11J70

2. CMB 2011 (vol 55 pp. 60)

Coons, Michael
Extension of Some Theorems of W. Schwarz
In this paper, we prove that a non--zero power series $F(z)\in\mathbb{C} [\mkern-3mu[ z]\mkern-3mu] $ satisfying $$F(z^d)=F(z)+\frac{A(z)}{B(z)},$$ where $d\geq 2$, $A(z),B(z)\in\mathbb{C}[z]$ with $A(z)\neq 0$ and $\deg A(z),\deg B(z)
Keywords:functional equations, transcendence, power series
Categories:11B37, 11J81

3. CMB 2009 (vol 52 pp. 481)

Alaca, Ay\c{s}e; Alaca, \c{S}aban; Williams, Kenneth S.
Some Infinite Products of Ramanujan Type
In his ``lost'' notebook, Ramanujan stated two results, which are equivalent to the identities \[ \prod_{n=1}^{\infty} \frac{(1-q^n)^5}{(1-q^{5n})} =1-5\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{d} d \Big) q^n \] and \[ q\prod_{n=1}^{\infty} \frac{(1-q^{5n})^5}{(1-q^{n})} =\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{n/d} d \Big) q^n. \] We give several more identities of this type.

Keywords:Power series expansions of certain infinite products
Categories:11E25, 11F11, 11F27, 30B10

4. CMB 2006 (vol 49 pp. 256)

Neelon, Tejinder
A Bernstein--Walsh Type Inequality and Applications
A Bernstein--Walsh type inequality for $C^{\infty }$ functions of several variables is derived, which then is applied to obtain analogs and generalizations of the following classical theorems: (1) Bochnak--Siciak theorem: a $C^{\infty }$\ function on $\mathbb{R}^{n}$ that is real analytic on every line is real analytic; (2) Zorn--Lelong theorem: if a double power series $F(x,y)$\ converges on a set of lines of positive capacity then $F(x,y)$\ is convergent; (3) Abhyankar--Moh--Sathaye theorem: the transfinite diameter of the convergence set of a divergent series is zero.

Keywords:Bernstein-Walsh inequality, convergence sets, analytic functions, ultradifferentiable functions, formal power series
Categories:32A05, 26E05

© Canadian Mathematical Society, 2014 : https://cms.math.ca/