Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword polytope

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB 2010 (vol 53 pp. 614)

Böröczky, Károly J.; Schneider, Rolf
The Mean Width of Circumscribed Random Polytopes
For a given convex body $K$ in ${\mathbb R}^d$, a random polytope $K^{(n)}$ is defined (essentially) as the intersection of $n$ independent closed halfspaces containing $K$ and having an isotropic and (in a specified sense) uniform distribution. We prove upper and lower bounds of optimal orders for the difference of the mean widths of $K^{(n)}$ and $K$ as $n$ tends to infinity. For a simplicial polytope $P$, a precise asymptotic formula for the difference of the mean widths of $P^{(n)}$ and $P$ is obtained.

Keywords:random polytope, mean width, approximation
Categories:52A22, 60D05, 52A27

2. CMB 2009 (vol 52 pp. 342)

Bezdek, K.; Kiss, Gy.
On the X-ray Number of Almost Smooth Convex Bodies and of Convex Bodies of Constant Width
The X-ray numbers of some classes of convex bodies are investigated. In particular, we give a proof of the X-ray Conjecture as well as of the Illumination Conjecture for almost smooth convex bodies of any dimension and for convex bodies of constant width of dimensions $3$, $4$, $5$ and $6$.

Keywords:almost smooth convex body, convex body of constant width, weakly neighbourly antipodal convex polytope, Illumination Conjecture, X-ray number, X-ray Conjecture
Categories:52A20, 52A37, 52C17, 52C35

3. CMB 2009 (vol 52 pp. 366)

Gévay, Gábor
A Class of Cellulated Spheres with Non-Polytopal Symmetries
We construct, for all $d\geq 4$, a cellulation of $\mathbb S^{d-1}$. We prove that these cellulations cannot be polytopal with maximal combinatorial symmetry. Such non-realizability phenomenon was first described in dimension 4 by Bokowski, Ewald and Kleinschmidt, and, to the knowledge of the author, until now there have not been any known examples in higher dimensions. As a starting point for the construction, we introduce a new class of (Wythoffian) uniform polytopes, which we call duplexes. In proving our main result, we use some tools that we developed earlier while studying perfect polytopes. In particular, we prove perfectness of the duplexes; furthermore, we prove and make use of the perfectness of another new class of polytopes which we obtain by a variant of the so-called $E$-construction introduced by Eppstein, Kuperberg and Ziegler.

Keywords:CW sphere, polytopality, automorphism group, symmetry group, uniform polytope
Categories:52B11, 52B15, 52B70

4. CMB 2009 (vol 52 pp. 435)

Monson, B.; Schulte, Egon
Modular Reduction in Abstract Polytopes
The paper studies modular reduction techniques for abstract regular and chiral polytopes, with two purposes in mind:\ first, to survey the literature about modular reduction in polytopes; and second, to apply modular reduction, with moduli given by primes in $\mathbb{Z}[\tau]$ (with $\tau$ the golden ratio), to construct new regular $4$-polytopes of hyperbolic types $\{3,5,3\}$ and $\{5,3,5\}$ with automorphism groups given by finite orthogonal groups.

Keywords:abstract polytopes, regular and chiral, Coxeter groups, modular reduction
Categories:51M20, 20F55

5. CMB 2005 (vol 48 pp. 414)

Kaveh, Kiumars
Vector Fields and the Cohomology Ring of Toric Varieties
Let $X$ be a smooth complex projective variety with a holomorphic vector field with isolated zero set $Z$. From the results of Carrell and Lieberman there exists a filtration $F_0 \subset F_1 \subset \cdots$ of $A(Z)$, the ring of $\c$-valued functions on $Z$, such that $\Gr A(Z) \cong H^*(X, \c)$ as graded algebras. In this note, for a smooth projective toric variety and a vector field generated by the action of a $1$-parameter subgroup of the torus, we work out this filtration. Our main result is an explicit connection between this filtration and the polytope algebra of $X$.

Keywords:Toric variety, torus action, cohomology ring, simple polytope,, polytope algebra
Categories:14M25, 52B20

© Canadian Mathematical Society, 2014 :