1. CMB Online first
 Benamar, H.; Chandoul, A.; Mkaouar, M.

On the continued fraction expansion of fixed period in finite fields
The Chowla conjecture
states that,
if $t$ is any given
positive integer, there are infinitely many prime positive
integers $N$ such that $\operatorname{Per} (\sqrt{N})=t$, where
$\operatorname{Per} (\sqrt{N})$
is the period length of the continued fraction expansion for
$\sqrt{N}$.
C. Friesen proved
that, for any $k\in \mathbb{N}$, there are infinitely many
squarefree integers $N$, where the continued fraction expansion
of $\sqrt{N}$ has a fixed period. In this paper, we describe all
polynomials $Q\in \mathbb{F}_q[X] $ for which the continued fraction
expansion of $\sqrt {Q}$ has a fixed period, also we give a
lower
bound of the number of monic, nonsquares polynomials $Q$ such
that $\deg Q= 2d$ and $ Per \sqrt {Q}=t$.
Keywords:continued fractions, polynomials, formal power series Categories:11A55, 13J05 

2. CMB Online first
 Zaatra, Mohamed

Generating some symmetric semiclassical orthogonal polynomials
We show that if $v$ is a regular semiclassical form
(linear functional), then the symmetric form $u$ defined by the
relation
$x^{2}\sigma u = \lambda v$,
where $(\sigma f)(x)=f(x^{2})$ and the odd
moments of $u$ are $0$, is also
regular and semiclassical form for every
complex $\lambda $ except for a discrete set of numbers depending
on $v$. We give explicitly the threeterm recurrence relation
and the
structure relation coefficients of the orthogonal polynomials
sequence associated with $u$ and the class of the form $u$ knowing
that of $v$. We conclude with an illustrative example.
Keywords:orthogonal polynomials, quadratic decomposition, semiclassical forms, structure relation Categories:33C45, 42C05 

3. CMB 2015 (vol 58 pp. 225)
 Aghigh, Kamal; Nikseresht, Azadeh

Characterizing Distinguished Pairs by Using Liftings of Irreducible Polynomials
Let $v$ be a henselian valuation of any rank of a field
$K$ and $\overline{v}$ be the unique extension of $v$ to a
fixed algebraic closure $\overline{K}$ of $K$. In 2005, it was studied properties
of those pairs $(\theta,\alpha)$ of elements of $\overline{K}$
with $[K(\theta): K]\gt [K(\alpha): K]$ where $\alpha$ is an element
of smallest degree over $K$ such that
$$
\overline{v}(\theta\alpha)=\sup\{\overline{v}(\theta\beta)
\ \beta\in \overline{K}, \ [K(\beta): K]\lt [K(\theta): K]\}.
$$
Such pairs are referred to as distinguished pairs.
We use the concept of liftings of irreducible polynomials to give a
different characterization of distinguished pairs.
Keywords:valued fields, nonArchimedean valued fields, irreducible polynomials Categories:12J10, 12J25, 12E05 

4. CMB 2012 (vol 56 pp. 844)
 Shparlinski, Igor E.

On the Average Number of SquareFree Values of Polynomials
We obtain an asymptotic formula for the number
of squarefree integers in $N$ consecutive values
of polynomials on average over integral
polynomials of degree at most $k$ and of
height at most $H$, where $H \ge N^{k1+\varepsilon}$
for some fixed $\varepsilon\gt 0$.
Individual results of this kind for polynomials of degree $k \gt 3$,
due to A. Granville (1998),
are only known under the $ABC$conjecture.
Keywords:polynomials, squarefree numbers Category:11N32 

5. CMB 2012 (vol 56 pp. 602)
6. CMB 2011 (vol 56 pp. 510)
 Dubickas, Artūras

Linear Forms in Monic Integer Polynomials
We prove a necessary and sufficient condition on the list of
nonzero integers $u_1,\dots,u_k$, $k \geq 2$, under which a monic
polynomial $f \in \mathbb{Z}[x]$ is expressible by a linear form
$u_1f_1+\dots+u_kf_k$ in monic polynomials $f_1,\dots,f_k \in
\mathbb{Z}[x]$. This condition is independent of $f$. We also show that if
this condition holds, then the monic polynomials $f_1,\dots,f_k$
can be chosen to be irreducible in $\mathbb{Z}[x]$.
Keywords:irreducible polynomial, height, linear form in polynomials, Eisenstein's criterion Categories:11R09, 11C08, 11B83 

7. CMB 2011 (vol 56 pp. 251)
 Borwein, Peter; Choi, Stephen K. K.; Ganguli, Himadri

Sign Changes of the Liouville Function on Quadratics
Let $\lambda (n)$ denote the Liouville function. Complementary to the prime number theorem, Chowla conjectured
that
\begin{equation*}
\label{a.1}
\sum_{n\le x} \lambda (f(n)) =o(x)\tag{$*$}
\end{equation*}
for any polynomial $f(x)$ with integer coefficients which is not of
form $bg(x)^2$.
When $f(x)=x$, $(*)$ is equivalent to the prime number theorem.
Chowla's conjecture has been proved for linear functions,
but for degree
greater than 1, the conjecture seems
to be extremely hard and remains wide open.
One can consider a weaker form
of Chowla's conjecture.
Conjecture 1.
[Cassaigne et al.]
If $f(x) \in \mathbb{Z} [x]$ and is not in the form of $bg^2(x)$
for some $g(x)\in \mathbb{Z}[x]$, then $\lambda (f(n))$
changes sign infinitely often.
Clearly, Chowla's conjecture implies Conjecture 1.
Although weaker,
Conjecture 1 is still wide open for polynomials of degree $\gt 1$.
In this article, we study Conjecture 1 for
quadratic polynomials. One of our main theorems is the following.
Theorem 1
Let $f(x) = ax^2+bx +c $ with $a\gt 0$ and $l$
be a positive integer such that $al$ is
not a perfect square. If the
equation $f(n)=lm^2 $ has one solution
$(n_0,m_0) \in \mathbb{Z}^2$, then it has infinitely
many positive solutions $(n,m) \in \mathbb{N}^2$.
As a direct consequence of Theorem 1, we prove the following.
Theorem 2
Let $f(x)=ax^2+bx+c$ with $a \in \mathbb{N}$ and $b,c \in \mathbb{Z}$. Let
\[
A_0=\Bigl[\frac{b+(D+1)/2}{2a}\Bigr]+1.
\]
Then either the binary sequence $\{ \lambda (f(n)) \}_{n=A_0}^\infty$ is
a constant sequence or it changes sign infinitely often.
Some partial results of Conjecture 1 for quadratic polynomials are also proved using Theorem 1.
Keywords:Liouville function, Chowla's conjecture, prime number theorem, binary sequences, changes sign infinitely often, quadratic polynomials, Pell equation Categories:11N60, 11B83, 11D09 

8. CMB 2011 (vol 56 pp. 194)
 Stefánsson, Úlfar F.

On the Smallest and Largest Zeros of MÃ¼ntzLegendre Polynomials
MÃ¼ntzLegendre
polynomials $L_n(\Lambda;x)$ associated with a
sequence $\Lambda=\{\lambda_k\}$ are obtained by orthogonalizing the
system $(x^{\lambda_0}, x^{\lambda_1}, x^{\lambda_2}, \dots)$ in
$L_2[0,1]$ with respect to the Legendre weight. If the $\lambda_k$'s
are distinct, it is well known that $L_n(\Lambda;x)$ has exactly $n$
zeros $l_{n,n}\lt l_{n1,n}\lt \cdots \lt l_{2,n}\lt l_{1,n}$ on $(0,1)$.
First we prove the following global bound for the smallest zero,
$$
\exp\biggl(4\sum_{j=0}^n \frac{1}{2\lambda_j+1}\biggr) \lt l_{n,n}.
$$
An important consequence is that if the associated MÃ¼ntz space is
nondense in $L_2[0,1]$, then
$$
\inf_{n}x_{n,n}\geq
\exp\biggl({4\sum_{j=0}^{\infty} \frac{1}{2\lambda_j+1}}\biggr)\gt 0,
$$
so
the elements $L_n(\Lambda;x)$ have no zeros close to 0.
Furthermore, we determine the asymptotic behavior of the largest zeros; for $k$ fixed,
$$
\lim_{n\rightarrow\infty} \vert \log l_{k,n}\vert \sum_{j=0}^n
(2\lambda_j+1)= \Bigl(\frac{j_k}{2}\Bigr)^2,
$$
where $j_k$ denotes the $k$th zero of the Bessel function $J_0$.
Keywords:MÃ¼ntz polynomials, MÃ¼ntzLegendre polynomials Categories:42C05, 42C99, 41A60, 30B50 

9. CMB 2011 (vol 54 pp. 217)
 Chen, William Y. C.; Wang, Larry X. W.; Yang, Arthur L. B.

Recurrence Relations for Strongly $q$LogConvex Polynomials
We consider a class of
strongly $q$logconvex polynomials based on a triangular recurrence
relation with linear coefficients, and we show that the Bell
polynomials, the Bessel polynomials, the Ramanujan polynomials and
the Dowling polynomials are strongly $q$logconvex. We also prove
that the Bessel transformation preserves logconvexity.
Keywords:logconcavity, $q$logconvexity, strong $q$logconvexity, Bell polynomials, Bessel polynomials, Ramanujan polynomials, Dowling polynomials Categories:05A20, 05E99 

10. CMB 2009 (vol 52 pp. 511)
11. CMB 2009 (vol 52 pp. 95)
 Miranian, L.

Matrix Valued Orthogonal Polynomials on the Unit Circle: Some Extensions of the Classical Theory
In the work presented below the classical subject of orthogonal
polynomials on the unit
circle is discussed in the matrix setting. An explicit matrix
representation of the matrix valued orthogonal polynomials in terms of
the moments of the measure is presented. Classical recurrence
relations are revisited using the matrix representation of the
polynomials. The matrix expressions for the kernel polynomials and the
ChristoffelDarboux formulas are presented for the first time.
Keywords:Matrix valued orthogonal polynomials, unit circle, Schur complements, recurrence relations, kernel polynomials, ChristoffelDarboux Category:42C99 

12. CMB 2005 (vol 48 pp. 547)
 Fehér, L. M.; Némethi, A.; Rimányi, R.

Degeneracy of 2Forms and 3Forms
We study some global aspects of differential complex 2forms and 3forms
on complex manifolds.
We compute the cohomology classes represented by the sets of points
on a manifold where such a form degenerates in various senses,
together with other similar cohomological obstructions.
Based on these results and a formula for projective
representations, we calculate the degree of the projectivization
of certain orbits of the representation $\Lambda^k\C^n$.
Keywords:Classes of degeneracy loci, 2forms, 3forms, Thom polynomials, global singularity theory Categories:14N10, 57R45 

13. CMB 2001 (vol 44 pp. 337)
 Vinet, Luc; Zhedanov, Alexei

Spectral Transformations of the Laurent Biorthogonal Polynomials, II. Pastro Polynomials
We continue to study the simplest closure conditions for chains of
spectral transformations of the Laurent biorthogonal polynomials
($\LBP$). It is shown that the 11periodic $q$closure condition
leads to the $\LBP$ introduced by Pastro. We introduce classes of
semiclassical and LaguerreHahn $\LBP$ associated to generic closure
conditions of the chain of spectral transformations.
Keywords:Laurent orthogonal polynomials, Pastro polynomials, spectral transformations Category:33D45 
