Expand all Collapse all | Results 1 - 25 of 30 |
1. CMB Online first
Characterizing Distinguished Pairs by Using Liftings of Irreducible Polynomials Let $v$ be a henselian valuation of any rank of a field
$K$ and $\overline{v}$ be the unique extension of $v$ to a
fixed algebraic closure $\overline{K}$ of $K$. In 2005, it was studied properties
of those pairs $(\theta,\alpha)$ of elements of $\overline{K}$
with $[K(\theta): K]\gt [K(\alpha): K]$ where $\alpha$ is an element
of smallest degree over $K$ such that
$$
\overline{v}(\theta-\alpha)=\sup\{\overline{v}(\theta-\beta)
|\ \beta\in \overline{K}, \ [K(\beta): K]\lt [K(\theta): K]\}.
$$
Such pairs are referred to as distinguished pairs.
We use the concept of liftings of irreducible polynomials to give a
different characterization of distinguished pairs.
Keywords:valued fields, non-Archimedean valued fields, irreducible polynomials Categories:12J10, 12J25, 12E05 |
2. CMB 2014 (vol 57 pp. 609)
Jacobson Radicals of Skew Polynomial Rings of Derivation Type We provide necessary and sufficient conditions for a skew polynomial ring of derivation type to be semiprimitive, when the base ring has no nonzero nil ideals. This extends existing results on the Jacobson radical of skew polynomial rings of derivation
type.
Keywords:skew polynomial rings, Jacobson radical, derivation Categories:16S36, 16N20 |
3. CMB 2014 (vol 57 pp. 538)
Infinite Families of $A_4$-Sextic Polynomials In this article we develop a test to determine whether a sextic
polynomial that is irreducible over $\mathbb{Q}$ has Galois group isomorphic
to the alternating group $A_4$. This test does not involve the
computation of resolvents, and we use this test to construct several
infinite families of such polynomials.
Keywords:Galois group, sextic polynomial, inverse Galois theory, irreducible polynomial Categories:12F10, 12F12, 11R32, 11R09 |
4. CMB 2012 (vol 56 pp. 759)
A Generalization of a Theorem of Boyd and Lawton The Mahler measure of a nonzero $n$-variable polynomial $P$ is the integral of
$\log|P|$ on the unit $n$-torus. A result of Boyd and Lawton says that
the Mahler measure of a multivariate polynomial is the limit of Mahler
measures of univariate polynomials. We prove the analogous
result for different extensions of Mahler measure such as generalized
Mahler measure (integrating the maximum of $\log|P|$ for possibly
different $P$'s),
multiple Mahler measure (involving products of $\log|P|$ for possibly
different $P$'s), and higher Mahler measure (involving $\log^k|P|$).
Keywords:Mahler measure, polynomial Categories:11R06, 11R09 |
5. CMB 2012 (vol 56 pp. 844)
On the Average Number of Square-Free Values of Polynomials We obtain an asymptotic formula for the number
of square-free integers in $N$ consecutive values
of polynomials on average over integral
polynomials of degree at most $k$ and of
height at most $H$, where $H \ge N^{k-1+\varepsilon}$
for some fixed $\varepsilon\gt 0$.
Individual results of this kind for polynomials of degree $k \gt 3$,
due to A. Granville (1998),
are only known under the $ABC$-conjecture.
Keywords:polynomials, square-free numbers Category:11N32 |
6. CMB 2012 (vol 56 pp. 602)
Resultants of Chebyshev Polynomials: A Short Proof We give a simple proof of the value of the resultant of two Chebyshev polynomials
(of the first or the second kind),
values lately obtained by D. P. Jacobs, M. O. Rayes and V. Trevisan.
Keywords:resultant, Chebyshev polynomials, cyclotomic polynomials Categories:11R09, 11R04 |
7. CMB 2012 (vol 56 pp. 769)
A Non-zero Value Shared by an Entire Function and its Linear Differential Polynomials In this paper we study uniqueness of entire functions
sharing a non-zero finite value with linear differential polynomials
and address a result of W. Wang and P. Li.
Keywords:entire function, linear differential polynomial, value sharing Category:30D35 |
8. CMB 2012 (vol 56 pp. 584)
On Automorphisms and Commutativity in Semiprime Rings Let $R$ be a semiprime ring with center
$Z(R)$. For $x,y\in R$, we denote by $[x,y]=xy-yx$ the commutator of
$x$ and $y$. If $\sigma$ is a non-identity automorphism of $R$ such
that
$$
\Big[\big[\dots\big[[\sigma(x^{n_0}),x^{n_1}],x^{n_2}\big],\dots\big],x^{n_k}\Big]=0
$$
for all $x \in R$, where $n_{0},n_{1},n_{2},\dots,n_{k}$ are fixed
positive integers, then there exists a map $\mu\colon R\rightarrow Z(R)$
such that $\sigma(x)=x+\mu(x)$ for all $x\in R$. In particular, when
$R$ is a prime ring, $R$ is commutative.
Keywords:automorphism, generalized polynomial identity (GPI) Categories:16N60, 16W20, 16R50 |
9. CMB 2011 (vol 56 pp. 510)
Linear Forms in Monic Integer Polynomials We prove a necessary and sufficient condition on the list of
nonzero integers $u_1,\dots,u_k$, $k \geq 2$, under which a monic
polynomial $f \in \mathbb{Z}[x]$ is expressible by a linear form
$u_1f_1+\dots+u_kf_k$ in monic polynomials $f_1,\dots,f_k \in
\mathbb{Z}[x]$. This condition is independent of $f$. We also show that if
this condition holds, then the monic polynomials $f_1,\dots,f_k$
can be chosen to be irreducible in $\mathbb{Z}[x]$.
Keywords:irreducible polynomial, height, linear form in polynomials, Eisenstein's criterion Categories:11R09, 11C08, 11B83 |
10. CMB 2011 (vol 56 pp. 251)
Sign Changes of the Liouville Function on Quadratics Let $\lambda (n)$ denote the Liouville function. Complementary to the prime number theorem, Chowla conjectured
that
\begin{equation*}
\label{a.1}
\sum_{n\le x} \lambda (f(n)) =o(x)\tag{$*$}
\end{equation*}
for any polynomial $f(x)$ with integer coefficients which is not of
form $bg(x)^2$.
When $f(x)=x$, $(*)$ is equivalent to the prime number theorem.
Chowla's conjecture has been proved for linear functions,
but for degree
greater than 1, the conjecture seems
to be extremely hard and remains wide open.
One can consider a weaker form
of Chowla's conjecture.
Conjecture 1.
[Cassaigne et al.]
If $f(x) \in \mathbb{Z} [x]$ and is not in the form of $bg^2(x)$
for some $g(x)\in \mathbb{Z}[x]$, then $\lambda (f(n))$
changes sign infinitely often.
Clearly, Chowla's conjecture implies Conjecture 1.
Although weaker,
Conjecture 1 is still wide open for polynomials of degree $\gt 1$.
In this article, we study Conjecture 1 for
quadratic polynomials. One of our main theorems is the following.
Theorem 1
Let $f(x) = ax^2+bx +c $ with $a\gt 0$ and $l$
be a positive integer such that $al$ is
not a perfect square. If the
equation $f(n)=lm^2 $ has one solution
$(n_0,m_0) \in \mathbb{Z}^2$, then it has infinitely
many positive solutions $(n,m) \in \mathbb{N}^2$.
As a direct consequence of Theorem 1, we prove the following.
Theorem 2
Let $f(x)=ax^2+bx+c$ with $a \in \mathbb{N}$ and $b,c \in \mathbb{Z}$. Let
\[
A_0=\Bigl[\frac{|b|+(|D|+1)/2}{2a}\Bigr]+1.
\]
Then either the binary sequence $\{ \lambda (f(n)) \}_{n=A_0}^\infty$ is
a constant sequence or it changes sign infinitely often.
Some partial results of Conjecture 1 for quadratic polynomials are also proved using Theorem 1.
Keywords:Liouville function, Chowla's conjecture, prime number theorem, binary sequences, changes sign infinitely often, quadratic polynomials, Pell equation Categories:11N60, 11B83, 11D09 |
11. CMB 2011 (vol 56 pp. 194)
On the Smallest and Largest Zeros of MÃ¼ntz-Legendre Polynomials MÃ¼ntz-Legendre
polynomials $L_n(\Lambda;x)$ associated with a
sequence $\Lambda=\{\lambda_k\}$ are obtained by orthogonalizing the
system $(x^{\lambda_0}, x^{\lambda_1}, x^{\lambda_2}, \dots)$ in
$L_2[0,1]$ with respect to the Legendre weight. If the $\lambda_k$'s
are distinct, it is well known that $L_n(\Lambda;x)$ has exactly $n$
zeros $l_{n,n}\lt l_{n-1,n}\lt \cdots \lt l_{2,n}\lt l_{1,n}$ on $(0,1)$.
First we prove the following global bound for the smallest zero,
$$
\exp\biggl(-4\sum_{j=0}^n \frac{1}{2\lambda_j+1}\biggr) \lt l_{n,n}.
$$
An important consequence is that if the associated MÃ¼ntz space is
non-dense in $L_2[0,1]$, then
$$
\inf_{n}x_{n,n}\geq
\exp\biggl({-4\sum_{j=0}^{\infty} \frac{1}{2\lambda_j+1}}\biggr)\gt 0,
$$
so
the elements $L_n(\Lambda;x)$ have no zeros close to 0.
Furthermore, we determine the asymptotic behavior of the largest zeros; for $k$ fixed,
$$
\lim_{n\rightarrow\infty} \vert \log l_{k,n}\vert \sum_{j=0}^n
(2\lambda_j+1)= \Bigl(\frac{j_k}{2}\Bigr)^2,
$$
where $j_k$ denotes the $k$-th zero of the Bessel function $J_0$.
Keywords:MÃ¼ntz polynomials, MÃ¼ntz-Legendre polynomials Categories:42C05, 42C99, 41A60, 30B50 |
12. CMB 2011 (vol 55 pp. 850)
Character Sums with Division Polynomials We obtain nontrivial estimates of quadratic character sums of division polynomials $\Psi_n(P)$, $n=1,2, \dots$, evaluated at a given point $P$ on an elliptic curve over a finite field of $q$ elements. Our bounds are nontrivial if the order of $P$ is at least $q^{1/2 + \varepsilon}$ for some fixed $\varepsilon > 0$. This work is motivated by an open question about statistical indistinguishability of some cryptographically relevant sequences that was recently brought up by K. Lauter and the second author.
Keywords:division polynomial, character sum Categories:11L40, 14H52 |
13. CMB 2011 (vol 55 pp. 271)
On the Existence of the Graded Exponent for Finite Dimensional $\mathbb{Z}_p$-graded Algebras Let $F$ be an algebraically closed field of characteristic zero, and
let $A$ be an associative unitary $F$-algebra graded by a group of
prime order. We prove that if $A$ is finite dimensional then the
graded exponent of $A$ exists and is an integer.
Keywords:exponent, polynomial identities, graded algebras Categories:16R50, 16R10, 16W50 |
14. CMB 2011 (vol 55 pp. 249)
Description of Entire Solutions of Eiconal Type Equations The paper describes entire solutions to the eiconal type non-linear partial differential
equations, which include the eiconal equations $(X_1(u))^2+(X_2(u))^2=1$ as special cases,
where
$X_1=p_1{\partial}/{\partial z_1}+p_2{\partial}/{\partial z_2}$,
$X_2=p_3{\partial}/{\partial z_1}+p_4{\partial}/{\partial z_2}$
are linearly independent operators with $p_j$ being arbitrary
polynomials in $\mathbf{C}^2$.
Keywords:entire solution, eiconal equation, polynomial, transcendental function Categories:32A15, 35F20 |
15. CMB 2011 (vol 54 pp. 288)
The Resultant of Chebyshev Polynomials Let $T_{n}$ denote the $n$-th
Chebyshev polynomial of the first kind,
and let $U_{n}$ denote the $n$-th
Chebyshev polynomial of the second kind.
We give an explicit formula for the resultant
$\operatorname{res}( T_{m}, T_{n} )$.
Similarly, we give a formula for
$\operatorname{res}( U_{m}, U_{n} )$.
Keywords:resultant, Chebyshev polynomial Categories:11Y11, 68W20 |
16. CMB 2011 (vol 54 pp. 217)
Recurrence Relations for Strongly $q$-Log-Convex Polynomials
We consider a class of
strongly $q$-log-convex polynomials based on a triangular recurrence
relation with linear coefficients, and we show that the Bell
polynomials, the Bessel polynomials, the Ramanujan polynomials and
the Dowling polynomials are strongly $q$-log-convex. We also prove
that the Bessel transformation preserves log-convexity.
Keywords:log-concavity, $q$-log-convexity, strong $q$-log-convexity, Bell polynomials, Bessel polynomials, Ramanujan polynomials, Dowling polynomials Categories:05A20, 05E99 |
17. CMB 2010 (vol 53 pp. 223)
Density of Polynomial Maps Let $R$ be a dense subring of $\operatorname{End}(_DV)$, where $V$ is a left vector space over a division ring $D$. If $\dim{_DV}=\infty$, then the range of any nonzero polynomial $f(X_1,\dots,X_m)$ on $R$ is dense in $\operatorname{End}(_DV)$. As an application, let $R$ be a prime ring without nonzero nil one-sided ideals and $0\ne a\in R$. If $af(x_1,\dots,x_m)^{n(x_i)}=0$ for all $x_1,\dots,x_m\in R$, where $n(x_i)$ is a positive integer depending on $x_1,\dots,x_m$, then $f(X_1,\dots,X_m)$ is a polynomial identity of $R$ unless $R$ is a finite matrix ring over a finite field.
Keywords:density, polynomial, endomorphism ring, PI Categories:16D60, 16S50 |
18. CMB 2009 (vol 53 pp. 321)
A Theorem on Unit-Regular Rings Let $R$ be a unit-regular ring and let $\sigma $ be an endomorphism of
$R$ such that $\sigma (e)=e$ for all $e^2=e\in R$ and let $n\ge 0$. It
is proved that every element of $R[x \mathinner;\sigma]/(x^{n+1})$ is
equivalent to an element of the form $e_0+e_1x+\dots +e_nx^n$, where
the $e_i$ are orthogonal idempotents of $R$. As an application, it is
proved that $R[x \mathinner; \sigma ]/(x^{n+1})$ is left morphic for each
$n\ge 0$.
Keywords:morphic rings, unit-regular rings, skew polynomial rings Categories:16E50, 16U99, 16S70, 16S35 |
19. CMB 2009 (vol 52 pp. 535)
A Note on Locally Nilpotent Derivations\\ and Variables of $k[X,Y,Z]$ We strengthen certain results
concerning actions of $(\Comp,+)$ on $\Comp^{3}$
and embeddings of $\Comp^{2}$ in $\Comp^{3}$,
and show that these results are in fact valid
over any field of characteristic zero.
Keywords:locally nilpotent derivations, group actions, polynomial automorphisms, variable, affine space Categories:14R10, 14R20, 14R25, 13N15 |
20. CMB 2009 (vol 52 pp. 511)
The Irreducibility of Polynomials That Have One Large Coefficient and Take a Prime Value We use some classical estimates for polynomial roots to provide
several irreducibility criteria for polynomials with integer
coefficients that have one sufficiently large coefficient and take a
prime value.
Keywords:Estimates for polynomial roots, irreducible polynomials Categories:11C08, 11R09 |
21. CMB 2009 (vol 52 pp. 95)
Matrix Valued Orthogonal Polynomials on the Unit Circle: Some Extensions of the Classical Theory In the work presented below the classical subject of orthogonal
polynomials on the unit
circle is discussed in the matrix setting. An explicit matrix
representation of the matrix valued orthogonal polynomials in terms of
the moments of the measure is presented. Classical recurrence
relations are revisited using the matrix representation of the
polynomials. The matrix expressions for the kernel polynomials and the
Christoffel--Darboux formulas are presented for the first time.
Keywords:Matrix valued orthogonal polynomials, unit circle, Schur complements, recurrence relations, kernel polynomials, Christoffel-Darboux Category:42C99 |
22. CMB 2008 (vol 51 pp. 584)
On Tensor Products of Polynomial Representations We determine the necessary and sufficient combinatorial
conditions for which the tensor product of two irreducible polynomial
representations of $\GL(n,\mathbb{C})$ is isomorphic to another.
As a consequence we discover families of Littlewood--Richardson
coefficients that are non-zero, and a condition on Schur non-negativity.
Keywords:polynomial representation, symmetric function, Littlewood--Richardson coefficient, Schur non-negative Categories:05E05, 05E10, 20C30 |
23. CMB 2005 (vol 48 pp. 547)
Degeneracy of 2-Forms and 3-Forms We study some global aspects of differential complex 2-forms and 3-forms
on complex manifolds.
We compute the cohomology classes represented by the sets of points
on a manifold where such a form degenerates in various senses,
together with other similar cohomological obstructions.
Based on these results and a formula for projective
representations, we calculate the degree of the projectivization
of certain orbits of the representation $\Lambda^k\C^n$.
Keywords:Classes of degeneracy loci, 2-forms, 3-forms, Thom polynomials, global singularity theory Categories:14N10, 57R45 |
24. CMB 2002 (vol 45 pp. 231)
Erratum:~~The Lehmer Polynomial and Pretzel Links Erratum to {\it The Lehmer Polynomial and Pretzel Links},
Canad. J. Math. {\bf 44}(2001), 440--451.
Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groups Categories:57M05, 57M25, 11R04, 11R27 |
25. CMB 2002 (vol 45 pp. 272)
The Transfer in the Invariant Theory of Modular Permutation Representations II In this note we show that the image of the transfer for permutation
representations of finite groups is generated by the transfers of
special monomials. This leads to a description of the image of the
transfer of the alternating groups. We also determine the height of
these ideals.
Keywords:polynomial invariants of finite groups, permutation representation, transfer Category:13A50 |