CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword plane

  Expand all        Collapse all Results 1 - 8 of 8

1. CMB 2014 (vol 57 pp. 697)

Bailet, Pauline
On the Monodromy of Milnor Fibers of Hyperplane Arrangements
We describe a general setting where the monodromy action on the first cohomology group of the Milnor fiber of a hyperplane arrangement is the identity.

Keywords:hyperplane arrangements, Milnor fiber, monodromy, local systems
Categories:32S22, 32S55, 32S25, 32S40

2. CMB 2013 (vol 57 pp. 72)

Grari, A.
Un Anneau Commutatif associé à un design symétrique
Dans les articles \cite{1}, \cite{2} et \cite{3}; l'auteur développe une représentation d'un plan projectif fini par un anneau commutatif unitaire dont les propriétés algébriques dépendent de la structure géométrique du plan. Dans l'article \cite{4}; il étend cette représentation aux designs symétriques. Cependant l'auteur de l'article \cite{7} fait remarquer que la multiplication définie dans ce cas ne peut être associative que si le design est un plan projectif. Dans ce papier on mènera une étude de cette représentation dans le cas des designs symétriques. On y montrera comment on peut faire associer un anneau commutatif unitaire à tout design symétrique , on y précisera certaines de ses propriétés, en particulier, celles qui relèvent de son invariance. On caractérisera aussi les géométries projectives finies de dimension supérieure moyennant cette représentation.

Keywords:projective planes, symmetric designs, commutative rings
Categories:05B05, 16S99

3. CMB 2013 (vol 57 pp. 821)

Jeong, Imsoon; Kim, Seonhui; Suh, Young Jin
Real Hypersurfaces in Complex Two-Plane Grassmannians with Reeb Parallel Structure Jacobi Operator
In this paper we give a characterization of a real hypersurface of Type~$(A)$ in complex two-plane Grassmannians ${ { {G_2({\mathbb C}^{m+2})} } }$, which means a tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in ${G_2({\mathbb C}^{m+2})}$, by the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.

Keywords:real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator
Categories:53C40, 53C15

4. CMB 2011 (vol 56 pp. 593)

Liu, Congwen; Zhou, Lifang
On the $p$-norm of an Integral Operator in the Half Plane
We give a partial answer to a conjecture of Dostanić on the determination of the norm of a class of integral operators induced by the weighted Bergman projection in the upper half plane.

Keywords:Bergman projection, integral operator, $L^p$-norm, the upper half plane
Categories:47B38, 47G10, 32A36

5. CMB 2011 (vol 55 pp. 767)

Martini, Horst; Wu, Senlin
On Zindler Curves in Normed Planes
We extend the notion of Zindler curve from the Euclidean plane to normed planes. A characterization of Zindler curves for general normed planes is given, and the relation between Zindler curves and curves of constant area-halving distances in such planes is discussed.

Keywords:rc length, area-halving distance, Birkhoff orthogonality, convex curve, halving pair, halving distance, isosceles orthogonality, midpoint curve, Minkowski plane, normed plane, Zindler curve
Categories:52A21, 52A10, 46C15

6. CMB 2010 (vol 53 pp. 629)

Chinen, Naotsugu; Hosaka, Tetsuya
Asymptotic Dimension of Proper CAT(0) Spaces that are Homeomorphic to the Plane
In this paper, we investigate a proper CAT(0) space $(X,d)$ that is homeomorphic to $\mathbb R^2$ and we show that the asymptotic dimension $\operatorname{asdim} (X,d)$ is equal to $2$.

Keywords:asymptotic dimension, CAT(0) space, plane
Categories:20F69, 54F45, 20F65

7. CMB 2009 (vol 52 pp. 424)

Martini, Horst; Spirova, Margarita
Covering Discs in Minkowski Planes
We investigate the following version of the circle covering problem in strictly convex (normed or) Minkowski planes: to cover a circle of largest possible diameter by $k$ unit circles. In particular, we study the cases $k=3$, $k=4$, and $k=7$. For $k=3$ and $k=4$, the diameters under consideration are described in terms of side-lengths and circumradii of certain inscribed regular triangles or quadrangles. This yields also simple explanations of geometric meanings that the corresponding homothety ratios have. It turns out that basic notions from Minkowski geometry play an essential role in our proofs, namely Minkowskian bisectors, $d$-segments, and the monotonicity lemma.

Keywords:affine regular polygon, bisector, circle covering problem, circumradius, $d$-segment, Minkowski plane, (strictly convex) normed plane
Categories:46B20, 52A21, 52C15

8. CMB 2005 (vol 48 pp. 523)

Düvelmeyer, Nico
Angle Measures and Bisectors in Minkowski Planes
\begin{abstract} We prove that a Minkowski plane is Euclidean if and only if Busemann's or Glogovskij's definitions of angular bisectors coincide with a bisector defined by an angular measure in the sense of Brass. In addition, bisectors defined by the area measure coincide with bisectors defined by the circumference (arc length) measure if and only if the unit circle is an equiframed curve.

Keywords:Radon curves, Minkowski geometry, Minkowski planes,, angular bisector, angular measure, equiframed curves
Categories:52A10, 52A21

© Canadian Mathematical Society, 2014 : https://cms.math.ca/