1. CMB Online first
 Liu, Ye

On chromatic functors and stable partitions of graphs
The chromatic functor of a simple graph is a functorization of
the chromatic polynomial. M. Yoshinaga showed
that two finite graphs have isomorphic chromatic functors if
and only if they have the same chromatic polynomial. The key
ingredient in the proof is the use of stable partitions of graphs.
The latter is shown to be closely related to chromatic functors.
In this note, we further investigate some interesting properties
of chromatic functors associated to simple graphs using stable
partitions. Our first result is the determination of the group
of natural automorphisms of the chromatic functor, which is in
general a larger group than the automorphism group of the graph.
The second result is that the composition of the chromatic functor
associated to a finite graph restricted to the category $\mathrm{FI}$
of finite sets and injections with the free functor into the
category of complex vector spaces yields a consistent sequence
of representations of symmetric groups which is representation
stable in the sense of ChurchFarb.
Keywords:chromatic functor, stable partition, representation stability Categories:05C15, 20C30 

2. CMB 2009 (vol 52 pp. 127)