Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword orthogonal

  Expand all        Collapse all Results 1 - 11 of 11

1. CMB Online first

Chen, Wengu; Ge, Huanmin
A sharp bound on RIC in generalized orthogonal matching pursuit
Generalized orthogonal matching pursuit (gOMP) algorithm has received much attention in recent years as a natural extension of orthogonal matching pursuit (OMP). It is used to recover sparse signals in compressive sensing. In this paper, a new bound is obtained for the exact reconstruction of every $K$-sparse signal via the gOMP algorithm in the noiseless case. That is, if the restricted isometry constant (RIC) $\delta_{NK+1}$ of the sensing matrix $A$ satisfies $ \delta_{NK+1}\lt \frac{1}{\sqrt{\frac{K}{N}+1}}$, then the gOMP can perfectly recover every $K$-sparse signal $x$ from $y=Ax$. Furthermore, the bound is proved to be sharp. In the noisy case, the above bound on RIC combining with an extra condition on the minimum magnitude of the nonzero components of $K$-sparse signals can guarantee that the gOMP selects all of support indices of the $K$-sparse signals.

Keywords:sensing matrix, generalized orthogonal matching pursuit, restricted isometry constant, sparse signal
Categories:65D15, 65J22, 68W40

2. CMB Online first

Moslehian, Mohammad Sal; Zamani, Ali
Characterizations of operator Birkhoff--James orthogonality
In this paper, we obtain some characterizations of the (strong) Birkhoff--James orthogonality for elements of Hilbert $C^*$-modules and certain elements of $\mathbb{B}(\mathscr{H})$. Moreover, we obtain a kind of Pythagorean relation for bounded linear operators. In addition, for $T\in \mathbb{B}(\mathscr{H})$ we prove that if the norm attaining set $\mathbb{M}_T$ is a unit sphere of some finite dimensional subspace $\mathscr{H}_0$ of $\mathscr{H}$ and $\|T\|_{{{\mathscr{H}}_0}^\perp} \lt \|T\|$, then for every $S\in\mathbb{B}(\mathscr{H})$, $T$ is the strong Birkhoff--James orthogonal to $S$ if and only if there exists a unit vector $\xi\in {\mathscr{H}}_0$ such that $\|T\|\xi = |T|\xi$ and $S^*T\xi = 0$. Finally, we introduce a new type of approximate orthogonality and investigate this notion in the setting of inner product $C^*$-modules.

Keywords:Hilbert $C^*$-module, Birkhoff--James orthogonality, strong Birkhoff--James orthogonality, approximate orthogonality
Categories:46L05, 46L08, 46B20

3. CMB 2016 (vol 59 pp. 834)

Liao, Fanghui; Liu, Zongguang
Some Properties of Triebel-Lizorkin and Besov Spaces Associated with Zygmund Dilations
In this paper, using Calderón's reproducing formula and almost orthogonality estimates, we prove the lifting property and the embedding theorem of the Triebel-Lizorkin and Besov spaces associated with Zygmund dilations.

Keywords:Triebel-Lizorkin and Besov spaces, Riesz potential, Calderón's reproducing formula, almost orthogonality estimate, Zygmund dilation, embedding theorem
Categories:42B20, 42B35

4. CMB 2015 (vol 58 pp. 877)

Zaatra, Mohamed
Generating Some Symmetric Semi-classical Orthogonal Polynomials
We show that if $v$ is a regular semi-classical form (linear functional), then the symmetric form $u$ defined by the relation $x^{2}\sigma u = -\lambda v$, where $(\sigma f)(x)=f(x^{2})$ and the odd moments of $u$ are $0$, is also regular and semi-classical form for every complex $\lambda $ except for a discrete set of numbers depending on $v$. We give explicitly the three-term recurrence relation and the structure relation coefficients of the orthogonal polynomials sequence associated with $u$ and the class of the form $u$ knowing that of $v$. We conclude with an illustrative example.

Keywords:orthogonal polynomials, quadratic decomposition, semi-classical forms, structure relation
Categories:33C45, 42C05

5. CMB 2011 (vol 55 pp. 418)

Vinh, Le Anh
Maximal Sets of Pairwise Orthogonal Vectors in Finite Fields
Given a positive integer $n$, a finite field $\mathbb{F}_q$ of $q$ elements ($q$ odd), and a non-degenerate symmetric bilinear form $B$ on $\mathbb{F}_q^n$, we determine the largest possible cardinality of pairwise $B$-orthogonal subsets $\mathcal{E} \subseteq \mathbb{F}_q^n$, that is, for any two vectors $\mathbf{x}, \mathbf{y} \in \mathcal{E}$, one has $B (\mathbf{x}, \mathbf{y}) = 0$.

Keywords:orthogonal sets, zero-distance sets

6. CMB 2011 (vol 55 pp. 821)

Perez-Garcia, C.; Schikhof, W. H.
New Examples of Non-Archimedean Banach Spaces and Applications
The study carried out in this paper about some new examples of Banach spaces, consisting of certain valued fields extensions, is a typical non-archimedean feature. We determine whether these extensions are of countable type, have $t$-orthogonal bases, or are reflexive. As an application we construct, for a class of base fields, a norm $\|\cdot\|$ on $c_0$, equivalent to the canonical supremum norm, without non-zero vectors that are $\|\cdot\|$-orthogonal and such that there is a multiplication on $c_0$ making $(c_0,\|\cdot\|)$ into a valued field.

Keywords:non-archimedean Banach spaces, valued field extensions, spaces of countable type, orthogonal bases
Categories:46S10, 12J25

7. CMB 2011 (vol 55 pp. 597)

Osękowski, Adam
Sharp Inequalities for Differentially Subordinate Harmonic Functions and Martingales
We determine the best constants $C_{p,\infty}$ and $C_{1,p}$, $1 < p < \infty$, for which the following holds. If $u$, $v$ are orthogonal harmonic functions on a Euclidean domain such that $v$ is differentially subordinate to $u$, then $$ \|v\|_p \leq C_{p,\infty} \|u\|_\infty,\quad \|v\|_1 \leq C_{1,p} \|u\|_p. $$ In particular, the inequalities are still sharp for the conjugate harmonic functions on the unit disc of $\mathbb R^2$. Sharp probabilistic versions of these estimates are also studied. As an application, we establish a sharp version of the classical logarithmic inequality of Zygmund.

Keywords: harmonic function, conjugate harmonic functions, orthogonal harmonic functions, martingale, orthogonal martingales, norm inequality, optimal stopping problem
Categories:31B05, 60G44, 60G40

8. CMB 2011 (vol 55 pp. 767)

Martini, Horst; Wu, Senlin
On Zindler Curves in Normed Planes
We extend the notion of Zindler curve from the Euclidean plane to normed planes. A characterization of Zindler curves for general normed planes is given, and the relation between Zindler curves and curves of constant area-halving distances in such planes is discussed.

Keywords:rc length, area-halving distance, Birkhoff orthogonality, convex curve, halving pair, halving distance, isosceles orthogonality, midpoint curve, Minkowski plane, normed plane, Zindler curve
Categories:52A21, 52A10, 46C15

9. CMB 2011 (vol 55 pp. 462)

Campbell, Peter S.; Stokke, Anna
Hook-content Formulae for Symplectic and Orthogonal Tableaux
By considering the specialisation $s_{\lambda}(1,q,q^2,\dots,q^{n-1})$ of the Schur function, Stanley was able to describe a formula for the number of semistandard Young tableaux of shape $\lambda$ in terms of the contents and hook lengths of the boxes in the Young diagram. Using specialisations of symplectic and orthogonal Schur functions, we derive corresponding formulae, first given by El Samra and King, for the number of semistandard symplectic and orthogonal $\lambda$-tableaux.

Keywords:symplectic tableaux, orthogonal tableaux, Schur function
Categories:05E05, 05E10

10. CMB 2009 (vol 52 pp. 95)

Miranian, L.
Matrix Valued Orthogonal Polynomials on the Unit Circle: Some Extensions of the Classical Theory
In the work presented below the classical subject of orthogonal polynomials on the unit circle is discussed in the matrix setting. An explicit matrix representation of the matrix valued orthogonal polynomials in terms of the moments of the measure is presented. Classical recurrence relations are revisited using the matrix representation of the polynomials. The matrix expressions for the kernel polynomials and the Christoffel--Darboux formulas are presented for the first time.

Keywords:Matrix valued orthogonal polynomials, unit circle, Schur complements, recurrence relations, kernel polynomials, Christoffel-Darboux

11. CMB 2001 (vol 44 pp. 337)

Vinet, Luc; Zhedanov, Alexei
Spectral Transformations of the Laurent Biorthogonal Polynomials, II. Pastro Polynomials
We continue to study the simplest closure conditions for chains of spectral transformations of the Laurent biorthogonal polynomials ($\LBP$). It is shown that the 1-1-periodic $q$-closure condition leads to the $\LBP$ introduced by Pastro. We introduce classes of semi-classical and Laguerre-Hahn $\LBP$ associated to generic closure conditions of the chain of spectral transformations.

Keywords:Laurent orthogonal polynomials, Pastro polynomials, spectral transformations

© Canadian Mathematical Society, 2017 :