Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword orbit

  Expand all        Collapse all Results 1 - 6 of 6

1. CMB 2012 (vol 57 pp. 97)

Levy, Jason
Rationality and the Jordan-Gatti-Viniberghi decomposition
We verify our earlier conjecture and use it to prove that the semisimple parts of the rational Jordan-Kac-Vinberg decompositions of a rational vector all lie in a single rational orbit.

Keywords:reductive group, $G$-module, Jordan decomposition, orbit closure, rationality
Categories:20G15, 14L24

2. CMB 2012 (vol 56 pp. 477)

Ayadi, Adlene
Hypercyclic Abelian Groups of Affine Maps on $\mathbb{C}^{n}$
We give a characterization of hypercyclic abelian group $\mathcal{G}$ of affine maps on $\mathbb{C}^{n}$. If $\mathcal{G}$ is finitely generated, this characterization is explicit. We prove in particular that no abelian group generated by $n$ affine maps on $\mathbb{C}^{n}$ has a dense orbit.

Keywords:affine, hypercyclic, dense, orbit, affine group, abelian
Categories:37C85, 47A16

3. CMB 2012 (vol 57 pp. 25)

Bourin, Jean-Christophe; Harada, Tetsuo; Lee, Eun-Young
Subadditivity Inequalities for Compact Operators
Some subadditivity inequalities for matrices and concave functions also hold for Hilbert space operators, but (unfortunately!) with an additional $\varepsilon$ term. It seems not possible to erase this residual term. However, in case of compact operators we show that the $\varepsilon$ term is unnecessary. Further, these inequalities are strict in a certain sense when some natural assumptions are satisfied. The discussion also stresses on matrices and their compressions and several open questions or conjectures are considered, both in the matrix and operator settings.

Keywords:concave or convex function, Hilbert space, unitary orbits, compact operators, compressions, matrix inequalities
Categories:47A63, 15A45

4. CMB 2011 (vol 54 pp. 693)

Lusala, Tsasa; Śniatycki, Jędrzej
Stratified Subcartesian Spaces
We show that if the family $\mathcal{O}$ of orbits of all vector fields on a subcartesian space $P$ is locally finite and each orbit in $\mathcal{O}$ is locally closed, then $\mathcal{O}$ defines a smooth Whitney A stratification of $P$. We also show that the stratification by orbit type of the space of orbits $M/G$ of a proper action of a Lie group $G$ on a smooth manifold $M$ is given by orbits of the family of all vector fields on $M/G$.

Keywords:Subcartesian spaces, orbits of vector fields, stratifications, Whitney Conditions
Categories:58A40, 57N80

5. CMB 2011 (vol 54 pp. 311)

Marzougui, Habib
Some Remarks Concerning the Topological Characterization of Limit Sets for Surface Flows
We give some extension to theorems of Jiménez López and Soler López concerning the topological characterization for limit sets of continuous flows on closed orientable surfaces.

Keywords:flows on surfaces, orbits, class of an orbit, singularities, minimal set, limit set, regular cylinder
Categories:37B20, 37E35

6. CMB 2007 (vol 50 pp. 447)

Śniatycki, Jędrzej
Generalizations of Frobenius' Theorem on Manifolds and Subcartesian Spaces
Let $\mathcal{F}$ be a family of vector fields on a manifold or a subcartesian space spanning a distribution $D$. We prove that an orbit $O$ of $\mathcal{F}$ is an integral manifold of $D$ if $D$ is involutive on $O$ and it has constant rank on $O$. This result implies Frobenius' theorem, and its various generalizations, on manifolds as well as on subcartesian spaces.

Keywords:differential spaces, generalized distributions, orbits, Frobenius' theorem, Sussmann's theorem
Categories:58A30, 58A40

© Canadian Mathematical Society, 2014 :