Expand all Collapse all | Results 1 - 25 of 78 |
1. CMB Online first
Isometries and Hermitian Operators on Zygmund Spaces In this paper we characterize the isometries of subspaces of the little Zygmund space. We show that the isometries of these spaces are surjective and represented as integral operators. We also show that all hermitian operators on these settings are bounded.
Keywords:Zygmund spaces, the little Zygmund space, Hermitian operators, surjective linear isometries, generators of one-parameter groups of surjective isometries Categories:46E15, 47B15, 47B38 |
2. CMB Online first
On the Regularity of the Multisublinear Maximal Functions This paper is concerned with the study of
the regularity for the multisublinear maximal operator. It is
proved that the multisublinear maximal operator is bounded on
first-order Sobolev spaces. Moreover, two key point-wise
inequalities for the partial derivatives of the multisublinear
maximal functions are established. As an application, the
quasi-continuity on the multisublinear maximal function is also
obtained.
Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuity Categories:42B25, 46E35 |
3. CMB Online first
Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators |
Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators Let $A:=-(\nabla-i\vec{a})\cdot(\nabla-i\vec{a})+V$ be a
magnetic SchrÃ¶dinger operator on $\mathbb{R}^n$,
where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$
and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse
HÃ¶lder conditions.
Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that
$\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function,
$\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$
(the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index
$I(\varphi)\in(0,1]$. In this article, the authors prove that
second-order Riesz transforms $VA^{-1}$ and
$(\nabla-i\vec{a})^2A^{-1}$ are bounded from the
Musielak-Orlicz-Hardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$,
to the Musielak-Orlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors
establish the boundedness of $VA^{-1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some
maximal inequalities associated with $A$ in the scale of $H_{\varphi,
A}(\mathbb{R}^n)$ are obtained.
Keywords:Musielak-Orlicz-Hardy space, magnetic SchrÃ¶dinger operator, atom, second-order Riesz transform, maximal inequality Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30 |
4. CMB 2014 (vol 58 pp. 51)
Spectral Flows of Dilations of Fredholm Operators Given an essentially unitary contraction and an arbitrary unitary
dilation of it, there is a naturally associated spectral flow which is
shown to be equal to the index of the operator. This result is
interpreted in terms of the $K$-theory of an associated mapping
cone. It is then extended to connect $\mathbb{Z}_2$ indices of odd symmetric
Fredholm operators to a $\mathbb{Z}_2$-valued spectral flow.
Keywords:spectral flow, Fredholm operators, Z2 indices Categories:19K56, 46L80 |
5. CMB Online first
Injective Tauberian Operators on $L_1$ and Operators with Dense Range on $\ell_\infty$ There exist injective Tauberian operators on $L_1(0,1)$ that have
dense, nonclosed range. This gives injective, nonsurjective
operators on $\ell_\infty$ that have dense range. Consequently, there
are two quasi-complementary, noncomplementary subspaces of
$\ell_\infty$ that are isometric to $\ell_\infty$.
Keywords:$L_1$, Tauberian operator, $\ell_\infty$ Categories:46E30, 46B08, 47A53 |
6. CMB 2014 (vol 58 pp. 19)
Compact Commutators of Rough Singular Integral Operators Let $b\in \mathrm{BMO}(\mathbb{R}^n)$ and $T_{\Omega}$ be the singular
integral operator with kernel $\frac{\Omega(x)}{|x|^n}$, where
$\Omega$ is homogeneous of degree zero, integrable and has mean
value zero on the unit sphere $S^{n-1}$. In this paper, by Fourier
transform estimates and approximation to the operator $T_{\Omega}$
by integral operators with smooth kernels, it is proved that if
$b\in \mathrm{CMO}(\mathbb{R}^n)$ and $\Omega$ satisfies a certain
minimal size condition, then the commutator generated by $b$ and
$T_{\Omega}$ is a compact operator on $L^p(\mathbb{R}^n)$ for
appropriate index $p$. The associated maximal operator is also
considered.
Keywords:commutator,singular integral operator, compact operator, maximal operator Category:42B20 |
7. CMB 2014 (vol 58 pp. 207)
Exact and Approximate Operator Parallelism Extending the notion of parallelism we introduce the concept of
approximate parallelism in normed spaces and then substantially
restrict ourselves to the setting of Hilbert space operators endowed
with the operator norm. We present several characterizations of the
exact and approximate operator parallelism in the algebra
$\mathbb{B}(\mathscr{H})$ of bounded linear operators acting on a
Hilbert space $\mathscr{H}$. Among other things, we investigate the
relationship between approximate parallelism and norm of inner
derivations on $\mathbb{B}(\mathscr{H})$. We also characterize the
parallel elements of a $C^*$-algebra by using states. Finally we
utilize the linking algebra to give some equivalence assertions
regarding parallel elements in a Hilbert $C^*$-module.
Keywords:$C^*$-algebra, approximate parallelism, operator parallelism, Hilbert $C^*$-module Categories:47A30, 46L05, 46L08, 47B47, 15A60 |
8. CMB 2014 (vol 57 pp. 834)
Restriction Operators Acting on Radial Functions on Vector Spaces Over Finite Fields We study $L^p-L^r$ restriction estimates for
algebraic varieties $V$ in the case when restriction operators act on
radial functions in the finite field setting.
We show that if the varieties $V$ lie in odd dimensional vector
spaces over finite fields, then the conjectured restriction estimates
are possible for all radial test functions.
In addition, assuming that the varieties $V$ are defined in even
dimensional spaces and have few intersection points with the sphere
of zero radius, we also obtain the conjectured exponents for all
radial test functions.
Keywords:finite fields, radial functions, restriction operators Categories:42B05, 43A32, 43A15 |
9. CMB 2014 (vol 57 pp. 780)
Measures of Noncompactness in Regular Spaces Previous results by the author on the connection
between three of measures
of non-compactness obtained for $L_p$, are extended
to regular spaces of measurable
functions.
An example of advantage
in some cases one of them in comparison with another is given.
Geometric characteristics of regular spaces are determined.
New theorems for $(k,\beta)$-boundedness of partially additive
operators are proved.
Keywords:measure of non-compactness, condensing map, partially additive operator, regular space, ideal space Categories:47H08, 46E30, 47H99, 47G10 |
10. CMB 2013 (vol 57 pp. 794)
New Characterizations of the Weighted Composition Operators Between Bloch Type Spaces in the Polydisk |
New Characterizations of the Weighted Composition Operators Between Bloch Type Spaces in the Polydisk We give some new characterizations for compactness of weighted
composition operators $uC_\varphi$ acting on Bloch-type spaces in
terms of the power of the components of $\varphi,$ where $\varphi$
is a holomorphic self-map of the polydisk $\mathbb{D}^n,$ thus
generalizing the results obtained by HyvÃ¤rinen and
LindstrÃ¶m in 2012.
Keywords:weighted composition operator, compactness, Bloch type spaces, polydisk, several complex variables Categories:47B38, 47B33, 32A37, 45P05, 47G10 |
11. CMB 2013 (vol 57 pp. 821)
Real Hypersurfaces in Complex Two-Plane Grassmannians with Reeb Parallel Structure Jacobi Operator In this paper we give a characterization of a real hypersurface of
Type~$(A)$ in complex two-plane Grassmannians ${ { {G_2({\mathbb
C}^{m+2})} } }$, which means a
tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in
${G_2({\mathbb C}^{m+2})}$, by
the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.
Keywords:real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator Categories:53C40, 53C15 |
12. CMB 2013 (vol 57 pp. 546)
Compact Operators in Regular LCQ Groups We show that a regular locally compact quantum group $\mathbb{G}$ is discrete
if and only if $\mathcal{L}^{\infty}(\mathbb{G})$ contains non-zero compact operators on
$\mathcal{L}^{2}(\mathbb{G})$.
As a corollary we classify all discrete quantum groups among
regular locally compact quantum groups $\mathbb{G}$ where
$\mathcal{L}^{1}(\mathbb{G})$ has the Radon--Nikodym property.
Keywords:locally compact quantum groups, regularity, compact operators Category:46L89 |
13. CMB 2012 (vol 57 pp. 166)
On Minimal and Maximal $p$-operator Space Structures We show that for $p$-operator spaces, there are natural notions of minimal and maximal
structures. These are useful for dealing with tensor products.
Keywords:$p$-operator space, min space, max space Categories:46L07, 47L25, 46G10 |
14. CMB 2012 (vol 56 pp. 801)
Estimates for Compositions of Maximal Operators with Singular Integrals We prove weak-type $(1,1)$ estimates for compositions of maximal
operators with singular integrals. Our main object of interest is the
operator $\Delta^*\Psi$ where $\Delta^*$ is Bourgain's maximal
multiplier operator and $\Psi$ is the sum of several modulated
singular integrals; here our method yields a significantly improved
bound for the $L^q$ operator norm when $1 \lt q \lt 2.$ We also consider
associated variation-norm estimates.
Keywords:maximal operator calderon-zygmund Category:42A45 |
15. CMB 2012 (vol 57 pp. 51)
Jordan $*$-Derivations of Finite-Dimensional Semiprime Algebras In the paper, we characterize Jordan $*$-derivations of a $2$-torsion
free, finite-dimensional semiprime algebra $R$ with involution $*$. To
be precise, we prove the theorem: Let $deltacolon R o R$ be a Jordan
$*$-derivation. Then there exists a $*$-algebra decomposition
$R=Uoplus V$ such that both $U$ and $V$ are invariant under
$delta$. Moreover, $*$ is the identity map of $U$ and $delta,|_U$ is a
derivation, and the Jordan $*$-derivation $delta,|_V$ is inner.
We also prove the theorem: Let $R$ be a noncommutative, centrally
closed prime algebra with involution $*$, $operatorname{char},R
e 2$,
and let $delta$ be a nonzero Jordan $*$-derivation of $R$. If $delta$ is
an elementary operator of $R$, then $operatorname{dim}_CRlt infty$ and
$delta$ is inner.
Keywords:semiprime algebra, involution, (inner) Jordan $*$-derivation, elementary operator Categories:16W10, 16N60, 16W25 |
16. CMB 2012 (vol 57 pp. 145)
The Essential Spectrum of the Essentially Isometric Operator Let $T$ be a contraction on a complex, separable, infinite dimensional
Hilbert space and let $\sigma \left( T\right) $ (resp. $\sigma _{e}\left(
T\right) )$ be its spectrum (resp. essential spectrum). We assume that $T$
is an essentially isometric operator, that is $I_{H}-T^{\ast }T$ is compact.
We show that if $D\diagdown \sigma \left( T\right) \neq \emptyset ,$ then
for every $f$ from the disc-algebra,
\begin{equation*}
\sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma _{e}\left(
T\right) \right) ,
\end{equation*}
where $D$ is the open unit disc. In addition, if $T$ lies in the class
$ C_{0\cdot }\cup C_{\cdot 0},$ then
\begin{equation*}
\sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma \left( T\right)
\cap \Gamma \right) ,
\end{equation*}
where $\Gamma $ is the unit circle. Some related problems are also discussed.
Keywords:Hilbert space, contraction, essentially isometric operator, (essential) spectrum, functional calculus Categories:47A10, 47A53, 47A60, 47B07 |
17. CMB 2012 (vol 57 pp. 25)
Subadditivity Inequalities for Compact Operators Some subadditivity inequalities for matrices and concave functions also hold for Hilbert space operators, but (unfortunately!) with an additional $\varepsilon$ term. It seems not possible to erase this residual term. However, in case of compact operators we show that the $\varepsilon$ term is unnecessary. Further, these inequalities are strict in a certain sense when some natural assumptions are satisfied. The discussion also stresses on matrices and their compressions and several open questions or conjectures are considered, both in the matrix and operator settings.
Keywords:concave or convex function, Hilbert space, unitary orbits, compact operators, compressions, matrix inequalities Categories:47A63, 15A45 |
18. CMB 2012 (vol 56 pp. 503)
Weak Sequential Completeness of $\mathcal K(X,Y)$ For Banach spaces $X$ and $Y$, we show that if $X^\ast$ and $Y$ are
weakly sequentially complete and every weakly compact operator from
$X$ to $Y$ is compact then the space of all compact operators from $X$
to $Y$ is weakly sequentially complete. The converse is also true if,
in addition, either $X^\ast$ or $Y$ has the bounded compact
approximation property.
Keywords:weak sequential completeness, reflexivity, compact operator space Categories:46B25, 46B28 |
19. CMB 2011 (vol 56 pp. 306)
Real Hypersurfaces in Complex Projective Space Whose Structure Jacobi Operator is Lie $\mathbb{D}$-parallel |
Real Hypersurfaces in Complex Projective Space Whose Structure Jacobi Operator is Lie $\mathbb{D}$-parallel We prove the non-existence of real hypersurfaces in complex projective
space whose structure Jacobi operator is Lie $\mathbb{D}$-parallel and
satisfies a further condition.
Keywords:complex projective space, real hypersurface, structure Jacobi operator Categories:53C15, 53C40 |
20. CMB 2011 (vol 56 pp. 593)
On the $p$-norm of an Integral Operator in the Half Plane We give a partial answer to a conjecture of DostaniÄ on the
determination of the norm of a class of integral operators induced
by the weighted Bergman projection in the upper half plane.
Keywords:Bergman projection, integral operator, $L^p$-norm, the upper half plane Categories:47B38, 47G10, 32A36 |
21. CMB 2011 (vol 56 pp. 92)
On Perturbations of Continuous Maps We give sufficient conditions for the following problem: given a
topological space $X$, a metric space $Y$, a subspace $Z$ of $Y$, and
a continuous map $f$ from $X$ to $Y$, is it possible, by applying to
$f$ an arbitrarily small perturbation, to ensure that $f(X)$ does not
meet $Z$? We also give a relative variant: if $f(X')$ does not meet
$Z$ for a certain subset $X'\subset X$, then we may keep $f$ unchanged
on $X'$. We also develop a variant for continuous sections of
fibrations and discuss some applications to matrix perturbation
theory.
Keywords:perturbation theory, general topology, applications to operator algebras / matrix perturbation theory Category:54F45 |
22. CMB 2011 (vol 56 pp. 229)
CesÃ ro Operators on the Hardy Spaces of the Half-Plane In this article we study the CesÃ ro
operator
$$
\mathcal{C}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\zeta)\,d\zeta,
$$
and its companion operator $\mathcal{T}$ on Hardy spaces of the
upper half plane. We identify $\mathcal{C}$ and $\mathcal{T}$ as
resolvents for appropriate semigroups of composition operators and we
find the norm and the spectrum in each case. The relation of
$\mathcal{C}$ and $\mathcal{T}$ with the corresponding Ces\`{a}ro
operators on Lebesgue spaces $L^p(\mathbb R)$ of the boundary line is also
discussed.
Keywords:CesÃ ro operators, Hardy spaces, semigroups, composition operators Categories:47B38, 30H10, 47D03 |
23. CMB 2011 (vol 56 pp. 65)
The Uncomplemented Subspace $\mathbf K(X,Y) $ A vector measure result is used to study the complementation of the
space $K(X,Y)$ of compact operators in the spaces $W(X,Y)$ of weakly
compact operators, $CC(X,Y)$ of completely continuous operators, and
$U(X,Y)$ of unconditionally converging operators.
Results of Kalton and Emmanuele concerning the complementation of
$K(X,Y)$ in $L(X,Y)$ and in $W(X,Y)$ are generalized. The containment
of $c_0$ and $\ell_\infty$ in spaces of operators is also studied.
Keywords:compact operators, weakly compact operators, uncomplemented subspaces of operators Categories:46B20, 46B28 |
24. CMB 2011 (vol 55 pp. 555)
Weighted $L^p$ Boundedness of Pseudodifferential Operators and Applications In this paper we prove weighted norm inequalities with weights in
the $A_p$ classes, for pseudodifferential operators with symbols in
the class ${S^{n(\rho -1)}_{\rho, \delta}}$ that fall outside the
scope of CalderÃ³n-Zygmund theory. This is accomplished by
controlling the sharp function of the pseudodifferential operator by
Hardy-Littlewood type maximal functions. Our weighted norm
inequalities also yield $L^{p}$ boundedness of commutators of
functions of bounded mean oscillation with a wide class of operators
in $\mathrm{OP}S^{m}_{\rho, \delta}$.
Keywords:weighted norm inequality, pseudodifferential operator, commutator estimates Categories:42B20, 42B25, 35S05, 47G30 |
25. CMB 2011 (vol 55 pp. 579)
Casimir Operators and Nilpotent Radicals It is shown that a Lie algebra having a nilpotent radical has a
fundamental set of invariants consisting of Casimir operators. A
different proof is given in the well known special case of an
abelian radical. A result relating the number of invariants to the
dimension of the Cartan subalgebra is also established.
Keywords:nilpotent radical, Casimir operators, algebraic Lie algebras, Cartan subalgebras, number of invariants Categories:16W25, 17B45, 16S30 |