CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword numerical range

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB 2008 (vol 51 pp. 86)

Nakazato, Hiroshi; Bebiano, Natália; Providência, Jo\ ao da
The Numerical Range of 2-Dimensional Krein Space Operators
The tracial numerical range of operators on a $2$-dimensional Krein space is investigated. Results in the vein of those obtained in the context of Hilbert spaces are obtained.

Keywords:numerical range, generalized numerical range, indefinite inner product space
Categories:15A60, 15A63, 15A45

2. CMB 2003 (vol 46 pp. 216)

Li, Chi-Kwong; Rodman, Leiba; Šemrl, Peter
Linear Maps on Selfadjoint Operators Preserving Invertibility, Positive Definiteness, Numerical Range
Let $H$ be a complex Hilbert space, and $\HH$ be the real linear space of bounded selfadjoint operators on $H$. We study linear maps $\phi\colon \HH \to \HH$ leaving invariant various properties such as invertibility, positive definiteness, numerical range, {\it etc}. The maps $\phi$ are not assumed {\it a priori\/} continuous. It is shown that under an appropriate surjective or injective assumption $\phi$ has the form $X \mapsto \xi TXT^*$ or $X \mapsto \xi TX^tT^*$, for a suitable invertible or unitary $T$ and $\xi\in\{1, -1\}$, where $X^t$ stands for the transpose of $X$ relative to some orthonormal basis. Examples are given to show that the surjective or injective assumption cannot be relaxed. The results are extended to complex linear maps on the algebra of bounded linear operators on $H$. Similar results are proved for the (real) linear space of (selfadjoint) operators of the form $\alpha I+K$, where $\alpha$ is a scalar and $K$ is compact.

Keywords:linear map, selfadjoint operator, invertible, positive definite, numerical range
Categories:47B15, 47B49

3. CMB 2001 (vol 44 pp. 270)

Cheung, Wai-Shun; Li, Chi-Kwong
Linear Operators Preserving Generalized Numerical Ranges and Radii on Certain Triangular Algebras of Matrices
Let $c = (c_1, \dots, c_n)$ be such that $c_1 \ge \cdots \ge c_n$. The $c$-numerical range of an $n \times n$ matrix $A$ is defined by $$ W_c(A) = \Bigl\{ \sum_{j=1}^n c_j (Ax_j,x_j) : \{x_1, \dots, x_n\} \text{ an orthonormal basis for } \IC^n \Bigr\}, $$ and the $c$-numerical radius of $A$ is defined by $r_c (A) = \max \{|z| : z \in W_c (A)\}$. We determine the structure of those linear operators $\phi$ on algebras of block triangular matrices, satisfying $$ W_c \bigl( \phi(A) \bigr) = W_c (A) \text{ for all } A \quad \text{or} \quad r_c \bigl( \phi(A) \bigr) = r_c (A) \text{ for all } A. $$

Keywords:linear operator, numerical range (radius), block triangular matrices
Categories:15A04, 15A60, 47B49

4. CMB 2000 (vol 43 pp. 448)

Li, Chi-Kwong; Zaharia, Alexandru
Nonconvexity of the Generalized Numerical Range Associated with the Principal Character
Suppose $m$ and $n$ are integers such that $1 \le m \le n$. For a subgroup $H$ of the symmetric group $S_m$ of degree $m$, consider the {\it generalized matrix function} on $m\times m$ matrices $B = (b_{ij})$ defined by $d^H(B) = \sum_{\sigma \in H} \prod_{j=1}^m b_{j\sigma(j)}$ and the {\it generalized numerical range} of an $n\times n$ complex matrix $A$ associated with $d^H$ defined by $$ \wmp(A) = \{d^H (X^*AX): X \text{ is } n \times m \text{ such that } X^*X = I_m\}. $$ It is known that $\wmp(A)$ is convex if $m = 1$ or if $m = n = 2$. We show that there exist normal matrices $A$ for which $\wmp(A)$ is not convex if $3 \le m \le n$. Moreover, for $m = 2 < n$, we prove that a normal matrix $A $ with eigenvalues lying on a straight line has convex $\wmp(A)$ if and only if $\nu A$ is Hermitian for some nonzero $\nu \in \IC$. These results extend those of Hu, Hurley and Tam, who studied the special case when $2 \le m \le 3 \le n$ and $H = S_m$.

Keywords:convexity, generalized numerical range, matrices
Category:15A60

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/