Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword normal form

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2016 (vol 59 pp. 461)

Ara, Pere; O'Meara, Kevin C.
The Nilpotent Regular Element Problem
We use George Bergman's recent normal form for universally adjoining an inner inverse to show that, for general rings, a nilpotent regular element $x$ need not be unit-regular. This contrasts sharply with the situation for nilpotent regular elements in exchange rings (a large class of rings), and for general rings when all powers of the nilpotent element $x$ are regular.

Keywords:nilpotent element, von Neumann regular element, unit-regular, Bergman's normal form
Categories:16E50, 16U99, 16S10, 16S15

2. CMB 2008 (vol 51 pp. 261)

Neeb, Karl-Hermann
On the Classification of Rational Quantum Tori and the Structure of Their Automorphism Groups
An $n$-dimensional quantum torus is a twisted group algebra of the group $\Z^n$. It is called rational if all invertible commutators are roots of unity. In the present note we describe a normal form for rational $n$-dimensional quantum tori over any field. Moreover, we show that for $n = 2$ the natural exact sequence describing the automorphism group of the quantum torus splits over any field.

Keywords:quantum torus, normal form, automorphisms of quantum tori

3. CMB 2001 (vol 44 pp. 323)

Schuman, Bertrand
Une classe d'hamiltoniens polynomiaux isochrones
Soit $H_0 = \frac{x^2+y^2}{2}$ un hamiltonien isochrone du plan $\Rset^2$. On met en \'evidence une classe d'hamiltoniens isochrones qui sont des perturbations polynomiales de $H_0$. On obtient alors une condition n\'ecessaire d'isochronisme, et un crit\`ere de choix pour les hamiltoniens isochrones. On voit ce r\'esultat comme \'etant une g\'en\'eralisation du caract\`ere isochrone des perturbations hamiltoniennes homog\`enes consid\'er\'ees dans [L], [P], [S]. Let $H_0 = \frac{x^2+y^2}{2}$ be an isochronous Hamiltonian of the plane $\Rset^2$. We obtain a necessary condition for a system to be isochronous. We can think of this result as a generalization of the isochronous behaviour of the homogeneous polynomial perturbation of the Hamiltonian $H_0$ considered in [L], [P], [S].

Keywords:Hamiltonian system, normal forms, resonance, linearization
Categories:34C20, 58F05, 58F22, 58F30

© Canadian Mathematical Society, 2016 :