1. CMB 2015 (vol 59 pp. 197)
 Rajaee, Saeed

Quasicopure Submodules
All rings are commutative with identity and all modules are unital.
In this paper we introduce the concept of quasicopure submodule
of
a multiplication $R$module $M$ and will give some results of
them.
We give some properties of tensor product of finitely generated
faithful multiplication modules.
Keywords:multiplication module, arithmetical ring, copure submodule, radical of submodules Categories:13A15, 13C05, 13C13, , 13C99 

2. CMB 2008 (vol 51 pp. 439)
 Samei, Karim

On the Maximal Spectrum of Semiprimitive Multiplication Modules
An $R$module $M$ is called a multiplication module if for each
submodule $N$ of $M$, $N=IM$ for some ideal $I$ of $R$. As
defined for a commutative ring $R$, an $R$module $M$ is said to be
semiprimitive if the intersection of maximal submodules of $M$ is
zero. The maximal spectra of a semiprimitive multiplication
module $M$ are studied. The isolated points of $\Max(M)$ are
characterized algebraically. The relationships among the maximal
spectra of $M$, $\Soc(M)$ and $\Ass(M)$ are studied. It is shown
that $\Soc(M)$ is exactly the set of all elements of $M$ which
belongs to every maximal submodule of $M$ except for a finite
number. If $\Max(M)$ is infinite, $\Max(M)$ is a onepoint
compactification of a discrete space if and only if $M$ is Gelfand and for
some maximal submodule $K$, $\Soc(M)$ is the intersection of all
prime submodules of $M$ contained in $K$. When $M$ is a
semiprimitive Gelfand module, we prove that every intersection
of essential submodules of $M$ is an essential submodule if and only if
$\Max(M)$ is an almost discrete space. The set of uniform
submodules of $M$ and the set of minimal submodules of $M$
coincide. $\Ann(\Soc(M))M$ is a summand submodule of $M$ if and only if
$\Max(M)$ is the union of two disjoint open subspaces $A$ and
$N$, where $A$ is almost discrete and $N$ is dense in itself. In
particular, $\Ann(\Soc(M))=\Ann(M)$ if and only if $\Max(M)$ is almost
discrete.
Keywords:multiplication module, semiprimitive module, Gelfand module, Zariski topolog Category:13C13 
