Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword multiplication module

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB Online first

Rajaee, Saeed
Quasi-copure submodules
All rings are commutative with identity and all modules are unital. In this paper we introduce the concept of quasi-copure submodule of a multiplication $R$-module $M$ and will give some results of them. We give some properties of tensor product of finitely generated faithful multiplication modules.

Keywords:multiplication module, arithmetical ring, copure submodule, radical of submodules
Categories:13A15, 13C05, 13C13, , 13C99

2. CMB 2008 (vol 51 pp. 439)

Samei, Karim
On the Maximal Spectrum of Semiprimitive Multiplication Modules
An $R$-module $M$ is called a multiplication module if for each submodule $N$ of $M$, $N=IM$ for some ideal $I$ of $R$. As defined for a commutative ring $R$, an $R$-module $M$ is said to be semiprimitive if the intersection of maximal submodules of $M$ is zero. The maximal spectra of a semiprimitive multiplication module $M$ are studied. The isolated points of $\Max(M)$ are characterized algebraically. The relationships among the maximal spectra of $M$, $\Soc(M)$ and $\Ass(M)$ are studied. It is shown that $\Soc(M)$ is exactly the set of all elements of $M$ which belongs to every maximal submodule of $M$ except for a finite number. If $\Max(M)$ is infinite, $\Max(M)$ is a one-point compactification of a discrete space if and only if $M$ is Gelfand and for some maximal submodule $K$, $\Soc(M)$ is the intersection of all prime submodules of $M$ contained in $K$. When $M$ is a semiprimitive Gelfand module, we prove that every intersection of essential submodules of $M$ is an essential submodule if and only if $\Max(M)$ is an almost discrete space. The set of uniform submodules of $M$ and the set of minimal submodules of $M$ coincide. $\Ann(\Soc(M))M$ is a summand submodule of $M$ if and only if $\Max(M)$ is the union of two disjoint open subspaces $A$ and $N$, where $A$ is almost discrete and $N$ is dense in itself. In particular, $\Ann(\Soc(M))=\Ann(M)$ if and only if $\Max(M)$ is almost discrete.

Keywords:multiplication module, semiprimitive module, Gelfand module, Zariski topolog

© Canadian Mathematical Society, 2015 :