CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword measures

  Expand all        Collapse all Results 1 - 6 of 6

1. CMB 2012 (vol 57 pp. 240)

Bernardes, Nilson C.
Addendum to ``Limit Sets of Typical Homeomorphisms''
Given an integer $n \geq 3$, a metrizable compact topological $n$-manifold $X$ with boundary, and a finite positive Borel measure $\mu$ on $X$, we prove that for the typical homeomorphism $f : X \to X$, it is true that for $\mu$-almost every point $x$ in $X$ the restriction of $f$ (respectively of $f^{-1}$) to the omega limit set $\omega(f,x)$ (respectively to the alpha limit set $\alpha(f,x)$) is topologically conjugate to the universal odometer.

Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets
Categories:37B20, 54H20, 28C15, 54C35, 54E52

2. CMB 2011 (vol 56 pp. 326)

Erdoğan, M. Burak; Oberlin, Daniel M.
Restricting Fourier Transforms of Measures to Curves in $\mathbb R^2$
We establish estimates for restrictions to certain curves in $\mathbb R^2$ of the Fourier transforms of some fractal measures.

Keywords:Fourier transforms of fractal measures, Fourier restriction
Categories:42B10, 28A12

3. CMB 2011 (vol 55 pp. 225)

Bernardes, Nilson C.
Limit Sets of Typical Homeomorphisms
Given an integer $n \geq 3$, a metrizable compact topological $n$-manifold $X$ with boundary, and a finite positive Borel measure $\mu$ on $X$, we prove that for the typical homeomorphism $f \colon X \to X$, it is true that for $\mu$-almost every point $x$ in $X$ the limit set $\omega(f,x)$ is a Cantor set of Hausdorff dimension zero, each point of $\omega(f,x)$ has a dense orbit in $\omega(f,x)$, $f$ is non-sensitive at each point of $\omega(f,x)$, and the function $a \to \omega(f,a)$ is continuous at $x$.

Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets
Categories:37B20, 54H20, 28C15, 54C35, 54E52

4. CMB 2011 (vol 54 pp. 544)

Strungaru, Nicolae
Positive Definite Measures with Discrete Fourier Transform and Pure Point Diffraction
In this paper we characterize the positive definite measures with discrete Fourier transform. As an application we provide a characterization of pure point diffraction in locally compact Abelian groups.

Keywords:pure point diffraction, positive definite measure, Fourier transform of measures
Category:43A25

5. CMB 2007 (vol 50 pp. 191)

Drungilas, Paulius; Dubickas, Artūras
Every Real Algebraic Integer Is a Difference of Two Mahler Measures
We prove that every real algebraic integer $\alpha$ is expressible by a difference of two Mahler measures of integer polynomials. Moreover, these polynomials can be chosen in such a way that they both have the same degree as that of $\alpha$, say $d$, one of these two polynomials is irreducible and another has an irreducible factor of degree $d$, so that $\alpha=M(P)-bM(Q)$ with irreducible polynomials $P, Q\in \mathbb Z[X]$ of degree $d$ and a positive integer $b$. Finally, if $d \leqslant 3$, then one can take $b=1$.

Keywords:Mahler measures, Pisot numbers, Pell equation, $abc$-conjecture
Categories:11R04, 11R06, 11R09, 11R33, 11D09

6. CMB 2002 (vol 45 pp. 97)

Haas, Andrew
Invariant Measures and Natural Extensions
We study ergodic properties of a family of interval maps that are given as the fractional parts of certain real M\"obius transformations. Included are the maps that are exactly $n$-to-$1$, the classical Gauss map and the Renyi or backward continued fraction map. A new approach is presented for deriving explicit realizations of natural automorphic extensions and their invariant measures.

Keywords:Continued fractions, interval maps, invariant measures
Categories:11J70, 58F11, 58F03

© Canadian Mathematical Society, 2014 : https://cms.math.ca/