Expand all Collapse all | Results 1 - 6 of 6 |
1. CMB 2012 (vol 57 pp. 240)
Addendum to ``Limit Sets of Typical Homeomorphisms'' Given an integer $n \geq 3$,
a metrizable compact topological $n$-manifold $X$ with boundary,
and a finite positive Borel measure $\mu$ on $X$,
we prove that for the typical homeomorphism $f : X \to X$,
it is true that for $\mu$-almost every point $x$ in $X$ the restriction of
$f$ (respectively of $f^{-1}$) to the omega limit set $\omega(f,x)$
(respectively to the alpha limit set $\alpha(f,x)$) is topologically
conjugate to the universal odometer.
Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets Categories:37B20, 54H20, 28C15, 54C35, 54E52 |
2. CMB 2011 (vol 56 pp. 326)
Restricting Fourier Transforms of Measures to Curves in $\mathbb R^2$ We establish estimates for restrictions to certain curves in $\mathbb R^2$ of the Fourier transforms
of some fractal measures.
Keywords:Fourier transforms of fractal measures, Fourier restriction Categories:42B10, 28A12 |
3. CMB 2011 (vol 55 pp. 225)
Limit Sets of Typical Homeomorphisms Given an integer $n \geq 3$, a metrizable compact
topological $n$-manifold $X$ with boundary, and a finite positive Borel
measure $\mu$ on $X$, we prove that for the typical homeomorphism
$f \colon X \to X$, it is true that for $\mu$-almost every point $x$ in $X$
the limit set $\omega(f,x)$ is a Cantor set of Hausdorff dimension zero,
each point of $\omega(f,x)$ has a dense orbit in $\omega(f,x)$, $f$ is
non-sensitive at each point of $\omega(f,x)$, and the function
$a \to \omega(f,a)$ is continuous at $x$.
Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets Categories:37B20, 54H20, 28C15, 54C35, 54E52 |
4. CMB 2011 (vol 54 pp. 544)
Positive Definite Measures with Discrete Fourier Transform and Pure Point Diffraction In this paper we characterize the positive
definite measures with discrete Fourier transform. As an
application we provide a characterization of pure point
diffraction in locally compact Abelian groups.
Keywords:pure point diffraction, positive definite measure, Fourier transform of measures Category:43A25 |
5. CMB 2007 (vol 50 pp. 191)
Every Real Algebraic Integer Is a Difference of Two Mahler Measures We prove that every real
algebraic integer $\alpha$ is expressible by a
difference of two Mahler measures of integer polynomials.
Moreover, these polynomials can be chosen in such a way that they
both have the same degree as that of $\alpha$, say
$d$, one of these two polynomials is irreducible and
another has an irreducible factor of degree $d$, so
that $\alpha=M(P)-bM(Q)$ with irreducible polynomials
$P, Q\in \mathbb Z[X]$ of degree $d$ and a
positive integer $b$. Finally, if $d \leqslant 3$, then one can take $b=1$.
Keywords:Mahler measures, Pisot numbers, Pell equation, $abc$-conjecture Categories:11R04, 11R06, 11R09, 11R33, 11D09 |
6. CMB 2002 (vol 45 pp. 97)
Invariant Measures and Natural Extensions We study ergodic properties of a family of interval maps that are
given as the fractional parts of certain real M\"obius
transformations. Included are the maps that are exactly
$n$-to-$1$, the classical Gauss map and the Renyi or backward
continued fraction map. A new approach is presented for deriving
explicit realizations of natural automorphic extensions and their
invariant measures.
Keywords:Continued fractions, interval maps, invariant measures Categories:11J70, 58F11, 58F03 |