1. CMB Online first
 Liu, Feng; Wu, Huoxiong

Endpoint Regularity of Multisublinear Fractional Maximal Functions
In this paper we investigate
the endpoint regularity properties of the multisublinear
fractional maximal operators, which include the multisublinear
HardyLittlewood maximal operator. We obtain some new bounds
for the derivative of the onedimensional multisublinear
fractional maximal operators acting on vectorvalued function
$\vec{f}=(f_1,\dots,f_m)$ with all $f_j$ being $BV$functions.
Keywords:multisublinear fractional maximal operators, Sobolev spaces, bounded variation Categories:42B25, 46E35 

2. CMB 2015 (vol 58 pp. 808)
 Liu, Feng; Wu, Huoxiong

On the Regularity of the Multisublinear Maximal Functions
This paper is concerned with the study of
the regularity for the multisublinear maximal operator. It is
proved that the multisublinear maximal operator is bounded on
firstorder Sobolev spaces. Moreover, two key pointwise
inequalities for the partial derivatives of the multisublinear
maximal functions are established. As an application, the
quasicontinuity on the multisublinear maximal function is also
obtained.
Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuity Categories:42B25, 46E35 

3. CMB 2014 (vol 58 pp. 19)
 Chen, Jiecheng; Hu, Guoen

Compact Commutators of Rough Singular Integral Operators
Let $b\in \mathrm{BMO}(\mathbb{R}^n)$ and $T_{\Omega}$ be the singular
integral operator with kernel $\frac{\Omega(x)}{x^n}$, where
$\Omega$ is homogeneous of degree zero, integrable and has mean
value zero on the unit sphere $S^{n1}$. In this paper, by Fourier
transform estimates and approximation to the operator $T_{\Omega}$
by integral operators with smooth kernels, it is proved that if
$b\in \mathrm{CMO}(\mathbb{R}^n)$ and $\Omega$ satisfies a certain
minimal size condition, then the commutator generated by $b$ and
$T_{\Omega}$ is a compact operator on $L^p(\mathbb{R}^n)$ for
appropriate index $p$. The associated maximal operator is also
considered.
Keywords:commutator,singular integral operator, compact operator, maximal operator Category:42B20 

4. CMB 2012 (vol 56 pp. 801)
 Oberlin, Richard

Estimates for Compositions of Maximal Operators with Singular Integrals
We prove weaktype $(1,1)$ estimates for compositions of maximal
operators with singular integrals. Our main object of interest is the
operator $\Delta^*\Psi$ where $\Delta^*$ is Bourgain's maximal
multiplier operator and $\Psi$ is the sum of several modulated
singular integrals; here our method yields a significantly improved
bound for the $L^q$ operator norm when $1 \lt q \lt 2.$ We also consider
associated variationnorm estimates.
Keywords:maximal operator calderonzygmund Category:42A45 

5. CMB 2010 (vol 53 pp. 690)
 Puerta, M. E.; Loaiza, G.

On the Maximal Operator Ideal Associated with a Tensor Norm Defined by Interpolation Spaces
The classical approach to studying operator ideals using tensor
norms mainly focuses on those tensor norms and operator ideals
defined by means of $\ell_p$ spaces. In a previous paper,
an interpolation space, defined via the real method
and using
$\ell_p$ spaces, was used to define a tensor
norm, and the associated minimal operator ideals were characterized.
In this paper, the next natural step is taken, that is, the
corresponding maximal operator
ideals are characterized. As an application, necessary and sufficient
conditions for the coincidence of
the maximal and minimal ideals are given.
Finally, the previous results are used in order to find some new
metric properties of the mentioned tensor norm.
Keywords:maximal operator ideals, ultraproducts of spaces, interpolation spaces Categories:46M05, 46M35, 46A32 

6. CMB 2009 (vol 53 pp. 263)
 Feuto, Justin; Fofana, Ibrahim; Koua, Konin

Weighted Norm Inequalities for a Maximal Operator in Some Subspace of Amalgams
We give weighted norm inequalities for the maximal fractional operator $ \mathcal M_{q,\beta }$ of HardyÂLittlewood and the fractional integral $I_{\gamma}$. These inequalities are established between $(L^{q},L^{p}) ^{\alpha }(X,d,\mu )$ spaces (which are superspaces of Lebesgue spaces $L^{\alpha}(X,d,\mu)$ and subspaces of amalgams $(L^{q},L^{p})(X,d,\mu)$) and in the setting of space of homogeneous type $(X,d,\mu)$. The conditions on the weights are stated in terms of Orlicz norm.
Keywords:fractional maximal operator, fractional integral, space of homogeneous type Categories:42B35, 42B20, 42B25 

7. CMB 1997 (vol 40 pp. 169)