CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword maximal inequality

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB Online first

Yang, Dachun; Yang, Sibei
Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic Schrödinger Operators
Let $A:=-(\nabla-i\vec{a})\cdot(\nabla-i\vec{a})+V$ be a magnetic Schrödinger operator on $\mathbb{R}^n$, where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$ and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse Hölder conditions. Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that $\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function, $\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$ (the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index $I(\varphi)\in(0,1]$. In this article, the authors prove that second-order Riesz transforms $VA^{-1}$ and $(\nabla-i\vec{a})^2A^{-1}$ are bounded from the Musielak-Orlicz-Hardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$, to the Musielak-Orlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors establish the boundedness of $VA^{-1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some maximal inequalities associated with $A$ in the scale of $H_{\varphi, A}(\mathbb{R}^n)$ are obtained.

Keywords:Musielak-Orlicz-Hardy space, magnetic Schrödinger operator, atom, second-order Riesz transform, maximal inequality
Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30

2. CMB 2011 (vol 55 pp. 708)

Demeter, Ciprian
Improved Range in the Return Times Theorem
We prove that the Return Times Theorem holds true for pairs of $L^p-L^q$ functions, whenever $\frac{1}{p}+\frac{1}{q}<\frac{3}{2}$.

Keywords:Return Times Theorem, maximal multiplier, maximal inequality
Categories:42B25, 37A45

© Canadian Mathematical Society, 2014 : https://cms.math.ca/