location:  Publications → journals
Search results

Search: All articles in the CMB digital archive with keyword maxima

 Expand all        Collapse all Results 1 - 21 of 21

1. CMB Online first

Rao, M. Sambasiva
 Coaxer Lattices The notion of coaxers is introduced in a pseudo-complemented distributive lattice. Boolean algebras are characterized in terms of coaxer ideals and congruences. The concept of coaxer lattices is introduced in pseudo-complemented distributive lattices and characterized in terms of coaxer ideals and maximal ideals. Finally, the coaxer lattices are also characterized in topological terms. Keywords:pseudo-complemented distributive lattice, coaxer ideal, coaxer lattice, maximal ideal, congruence, kernel, antikernelCategory:06D99

2. CMB Online first

Eroǧlu, Münevver Pınar; Argaç, Nurcan
 On Identities with Composition of Generalized Derivations Let $R$ be a prime ring with extended centroid $C$, $Q$ maximal right ring of quotients of $R$, $RC$ central closure of $R$ such that $dim_{C}(RC) \gt 4$, $f(X_{1},\dots,X_{n})$ a multilinear polynomial over $C$ which is not central-valued on $R$ and $f(R)$ the set of all evaluations of the multilinear polynomial $f\big(X_{1},\dots,X_{n}\big)$ in $R$. Suppose that $G$ is a nonzero generalized derivation of $R$ such that $G^2\big(u\big)u \in C$ for all $u\in f(R)$ then one of the following conditions holds: (I) there exists $a\in Q$ such that $a^2=0$ and either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all $x\in R$; (II) there exists $a\in Q$ such that $0\neq a^2\in C$ and either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all $x\in R$ and $f(X_{1},\dots,X_{n})^{2}$ is central-valued on $R$; (III) $char(R)=2$ and one of the following holds: (i) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all $x\in R$ and $a^{2}=b^{2}\in C$; (ii) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all $x\in R$, $a^{2}, b^{2}\in C$ and $f(X_{1},\ldots,X_{n})^{2}$ is central-valued on $R$; (iii) there exist $a \in Q$ and an $X$-outer derivation $d$ of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$ and $a^2+d(a)=0$; (iv) there exist $a \in Q$ and an $X$-outer derivation $d$ of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$, $a^2+d(a)\in C$ and $f(X_{1},\dots,X_{n})^{2}$ is central-valued on $R$. Moreover, we characterize the form of nonzero generalized derivations $G$ of $R$ satisfying $G^2(x)=\lambda x$ for all $x\in R$, where $\lambda \in C$. Keywords:prime ring, generalized derivation, composition, extended centroid, multilinear polynomial, maximal right ring of quotientsCategories:16N60, 16N25

3. CMB 2016 (vol 60 pp. 131)

Gürbüz, Ferit
 Some Estimates for Generalized Commutators of Rough Fractional Maximal and Integral Operators on Generalized Weighted Morrey Spaces In this paper, we establish $BMO$ estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces, respectively. Keywords:fractional integral operator, fractional maximal operator, rough kernel, generalized commutator, $A(p,q)$ weight, generalized weighted Morrey spaceCategories:42B20, 42B25

4. CMB 2016 (vol 60 pp. 12)

Akbari, Saieed; Miraftab, Babak; Nikandish, Reza
 Co-maximal Graphs of Subgroups of Groups Let $H$ be a group. The co-maximal graph of subgroups of $H$, denoted by $\Gamma(H)$, is a graph whose vertices are non-trivial and proper subgroups of $H$ and two distinct vertices $L$ and $K$ are adjacent in $\Gamma(H)$ if and only if $H=LK$. In this paper, we study the connectivity, diameter, clique number and vertex chromatic number of $\Gamma(H)$. For instance, we show that if $\Gamma(H)$ has no isolated vertex, then $\Gamma(H)$ is connected with diameter at most $3$. Also, we characterize all finite groups whose co-maximal graphs are connected. Among other results, we show that if $H$ is a finitely generated solvable group and $\Gamma(H)$ is connected and moreover the degree of a maximal subgroup is finite, then $H$ is finite. Furthermore, we show that the degree of each vertex in the co-maximal graph of a general linear group over an algebraically closed field is zero or infinite. Keywords:co-maximal graphs of subgroups of groups, diameter, nilpotent group, solvable groupCategories:05C25, 05E15, 20D10, 20D15

5. CMB Online first

Liu, Feng; Wu, Huoxiong
 Endpoint Regularity of Multisublinear Fractional Maximal Functions In this paper we investigate the endpoint regularity properties of the multisublinear fractional maximal operators, which include the multisublinear Hardy-Littlewood maximal operator. We obtain some new bounds for the derivative of the one-dimensional multisublinear fractional maximal operators acting on vector-valued function $\vec{f}=(f_1,\dots,f_m)$ with all $f_j$ being $BV$-functions. Keywords:multisublinear fractional maximal operators, Sobolev spaces, bounded variationCategories:42B25, 46E35

6. CMB 2015 (vol 58 pp. 808)

Liu, Feng; Wu, Huoxiong
 On the Regularity of the Multisublinear Maximal Functions This paper is concerned with the study of the regularity for the multisublinear maximal operator. It is proved that the multisublinear maximal operator is bounded on first-order Sobolev spaces. Moreover, two key point-wise inequalities for the partial derivatives of the multisublinear maximal functions are established. As an application, the quasi-continuity on the multisublinear maximal function is also obtained. Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuityCategories:42B25, 46E35

7. CMB 2014 (vol 58 pp. 432)

Yang, Dachun; Yang, Sibei
 Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators Let $A:=-(\nabla-i\vec{a})\cdot(\nabla-i\vec{a})+V$ be a magnetic SchrÃ¶dinger operator on $\mathbb{R}^n$, where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$ and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse HÃ¶lder conditions. Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that $\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function, $\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$ (the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index $I(\varphi)\in(0,1]$. In this article, the authors prove that second-order Riesz transforms $VA^{-1}$ and $(\nabla-i\vec{a})^2A^{-1}$ are bounded from the Musielak-Orlicz-Hardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$, to the Musielak-Orlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors establish the boundedness of $VA^{-1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some maximal inequalities associated with $A$ in the scale of $H_{\varphi, A}(\mathbb{R}^n)$ are obtained. Keywords:Musielak-Orlicz-Hardy space, magnetic SchrÃ¶dinger operator, atom, second-order Riesz transform, maximal inequalityCategories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30

8. CMB 2014 (vol 58 pp. 19)

Chen, Jiecheng; Hu, Guoen
 Compact Commutators of Rough Singular Integral Operators Let $b\in \mathrm{BMO}(\mathbb{R}^n)$ and $T_{\Omega}$ be the singular integral operator with kernel $\frac{\Omega(x)}{|x|^n}$, where $\Omega$ is homogeneous of degree zero, integrable and has mean value zero on the unit sphere $S^{n-1}$. In this paper, by Fourier transform estimates and approximation to the operator $T_{\Omega}$ by integral operators with smooth kernels, it is proved that if $b\in \mathrm{CMO}(\mathbb{R}^n)$ and $\Omega$ satisfies a certain minimal size condition, then the commutator generated by $b$ and $T_{\Omega}$ is a compact operator on $L^p(\mathbb{R}^n)$ for appropriate index $p$. The associated maximal operator is also considered. Keywords:commutator,singular integral operator, compact operator, maximal operatorCategory:42B20

9. CMB 2013 (vol 57 pp. 413)

Samei, Karim
 On the Comaximal Graph of a Commutative Ring Let $R$ be a commutative ring with $1$. In [P. K. Sharma, S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176(1995) 124-127], Sharma and Bhatwadekar defined a graph on $R$, $\Gamma(R)$, with vertices as elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if $Ra + Rb = R$. In this paper, we consider a subgraph $\Gamma_2(R)$ of $\Gamma(R)$ which consists of non-unit elements. We investigate the behavior of $\Gamma_2(R)$ and $\Gamma_2(R) \setminus \operatorname{J}(R)$, where $\operatorname{J}(R)$ is the Jacobson radical of $R$. We associate the ring properties of $R$, the graph properties of $\Gamma_2(R)$ and the topological properties of $\operatorname{Max}(R)$. Diameter, girth, cycles and dominating sets are investigated and the algebraic and the topological characterizations are given for graphical properties of these graphs. Keywords:comaximal, Diameter, girth, cycles, dominating setCategory:13A99

10. CMB 2013 (vol 57 pp. 119)

Mildenberger, Heike; Raghavan, Dilip; Steprans, Juris
 Splitting Families and Complete Separability We answer a question from Raghavan and SteprÄns by showing that $\mathfrak{s} = {\mathfrak{s}}_{\omega, \omega}$. Then we use this to construct a completely separable maximal almost disjoint family under $\mathfrak{s} \leq \mathfrak{a}$, partially answering a question of Shelah. Keywords:maximal almost disjoint family, cardinal invariantsCategories:03E05, 03E17, 03E65

11. CMB 2012 (vol 56 pp. 801)

Oberlin, Richard
 Estimates for Compositions of Maximal Operators with Singular Integrals We prove weak-type $(1,1)$ estimates for compositions of maximal operators with singular integrals. Our main object of interest is the operator $\Delta^*\Psi$ where $\Delta^*$ is Bourgain's maximal multiplier operator and $\Psi$ is the sum of several modulated singular integrals; here our method yields a significantly improved bound for the $L^q$ operator norm when $1 \lt q \lt 2.$ We also consider associated variation-norm estimates. Keywords:maximal operator calderon-zygmundCategory:42A45

12. CMB 2011 (vol 55 pp. 708)

Demeter, Ciprian
 Improved Range in the Return Times Theorem We prove that the Return Times Theorem holds true for pairs of $L^p-L^q$ functions, whenever $\frac{1}{p}+\frac{1}{q}<\frac{3}{2}$. Keywords:Return Times Theorem, maximal multiplier, maximal inequalityCategories:42B25, 37A45

13. CMB 2011 (vol 55 pp. 689)

Berndt, Ryan
 A Pointwise Estimate for the Fourier Transform and Maxima of a Function We show a pointwise estimate for the Fourier transform on the line involving the number of times the function changes monotonicity. The contrapositive of the theorem may be used to find a lower bound to the number of local maxima of a function. We also show two applications of the theorem. The first is the two weight problem for the Fourier transform, and the second is estimating the number of roots of the derivative of a function. Keywords:Fourier transform, maxima, two weight problem, roots, norm estimates, Dirichlet-Jordan theoremCategories:42A38, 65T99

14. CMB 2011 (vol 54 pp. 277)

Farley, Jonathan David
 Maximal Sublattices of Finite Distributive Lattices. III: A Conjecture from the 1984 Banff Conference on Graphs and Order Let $L$ be a finite distributive lattice. Let $\operatorname{Sub}_0(L)$ be the lattice $$\{S\mid S\text{ is a sublattice of }L\}\cup\{\emptyset\}$$ and let $\ell_*[\operatorname{Sub}_0(L)]$ be the length of the shortest maximal chain in $\operatorname{Sub}_0(L)$. It is proved that if $K$ and $L$ are non-trivial finite distributive lattices, then $$\ell_*[\operatorname{Sub}_0(K\times L)]=\ell_*[\operatorname{Sub}_0(K)]+\ell_*[\operatorname{Sub}_0(L)].$$ A conjecture from the 1984 Banff Conference on Graphs and Order is thus proved. Keywords:(distributive) lattice, maximal sublattice, (partially) ordered setCategories:06D05, 06D50, 06A07

15. CMB 2010 (vol 53 pp. 690)

Puerta, M. E.; Loaiza, G.
 On the Maximal Operator Ideal Associated with a Tensor Norm Defined by Interpolation Spaces The classical approach to studying operator ideals using tensor norms mainly focuses on those tensor norms and operator ideals defined by means of $\ell_p$ spaces. In a previous paper, an interpolation space, defined via the real method and using $\ell_p$ spaces, was used to define a tensor norm, and the associated minimal operator ideals were characterized. In this paper, the next natural step is taken, that is, the corresponding maximal operator ideals are characterized. As an application, necessary and sufficient conditions for the coincidence of the maximal and minimal ideals are given. Finally, the previous results are used in order to find some new metric properties of the mentioned tensor norm. Keywords:maximal operator ideals, ultraproducts of spaces, interpolation spacesCategories:46M05, 46M35, 46A32

16. CMB 2010 (vol 53 pp. 491)

Jizheng, Huang; Liu, Heping
 The Weak Type (1,1) Estimates of Maximal Functions on the Laguerre Hypergroup In this paper, we discuss various maximal functions on the Laguerre hypergroup $\mathbf{K}$ including the heat maximal function, the Poisson maximal function, and the Hardy--Littlewood maximal function which is consistent with the structure of hypergroup of $\mathbf{K}$. We shall establish the weak type $(1,1)$ estimates for these maximal functions. The $L^p$ estimates for $p>1$ follow from the interpolation. Some applications are included. Keywords:Laguerre hypergroup, maximal function, heat kernel, Poisson kernelCategories:42B25, 43A62

17. CMB 2009 (vol 53 pp. 263)

Feuto, Justin; Fofana, Ibrahim; Koua, Konin
 Weighted Norm Inequalities for a Maximal Operator in Some Subspace of Amalgams We give weighted norm inequalities for the maximal fractional operator $\mathcal M_{q,\beta }$ of HardyÂLittlewood and the fractional integral $I_{\gamma}$. These inequalities are established between $(L^{q},L^{p}) ^{\alpha }(X,d,\mu )$ spaces (which are superspaces of Lebesgue spaces $L^{\alpha}(X,d,\mu)$ and subspaces of amalgams $(L^{q},L^{p})(X,d,\mu)$) and in the setting of space of homogeneous type $(X,d,\mu)$. The conditions on the weights are stated in terms of Orlicz norm. Keywords:fractional maximal operator, fractional integral, space of homogeneous typeCategories:42B35, 42B20, 42B25

18. CMB 2006 (vol 49 pp. 3)

 On a Class of Singular Integral Operators With Rough Kernels In this paper, we study the $L^p$ mapping properties of a class of singular integral operators with rough kernels belonging to certain block spaces. We prove that our operators are bounded on $L^p$ provided that their kernels satisfy a size condition much weaker than that for the classical Calder\'{o}n--Zygmund singular integral operators. Moreover, we present an example showing that our size condition is optimal. As a consequence of our results, we substantially improve a previously known result on certain maximal functions. Keywords:Singular integrals, Rough kernels, Square functions,, Maximal functions, Block spacesCategories:42B20, 42B15, 42B25

19. CMB 2002 (vol 45 pp. 265)

Nawrocki, Marek
 On the Smirnov Class Defined by the Maximal Function H.~O.~Kim has shown that contrary to the case of $H^p$-space, the Smirnov class $M$ defined by the radial maximal function is essentially smaller than the classical Smirnov class of the disk. In the paper we show that these two classes have the same corresponding locally convex structure, {\it i.e.} they have the same dual spaces and the same Fr\'echet envelopes. We describe a general form of a continuous linear functional on $M$ and multiplier from $M$ into $H^p$, $0 < p \leq \infty$. Keywords:Smirnov class, maximal radial function, multipliers, dual space, FrÃ©chet envelopeCategories:46E10, 30A78, 30A76

20. CMB 2000 (vol 43 pp. 330)

Hare, Kathryn E.
 Maximal Operators and Cantor Sets We consider maximal operators in the plane, defined by Cantor sets of directions, and show such operators are not bounded on $L^2$ if the Cantor set has positive Hausdorff dimension. Keywords:maximal functions, Cantor set, lacunary setCategories:42B25, 43A46

21. CMB 1997 (vol 40 pp. 169)

Cruz-Uribe, David
 The class $A^{+}_{\infty}(\lowercase{g})$ and the one-sided reverse HÃ¶lder inequality We give a direct proof that $w$ is an $A^{+}_{\infty}(g)$ weight if and only if $w$ satisfies a one-sided, weighted reverse H\"older inequality. Keywords:one-sided maximal operator, one-sided $(A_\infty)$, one-sided, reverse HÃ¶lder inequalityCategory:42B25
 top of page | contact us | privacy | site map |