Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword locally compact quantum group

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Ghanei, Mohammad Reza; Nasr-Isfahani, Rasoul; Nemati, Mehdi
A homological property and Arens regularity of locally compact quantum groups
We characterize two important notions of amenability and compactness of a locally compact quantum group ${\mathbb G}$ in terms of certain homological properties. For this, we show that ${\mathbb G}$ is character amenable if and only if it is both amenable and co-amenable. We finally apply our results to Arens regularity problems of the quantum group algebra $L^1({\mathbb G})$; in particular, we improve an interesting result by Hu, Neufang and Ruan.

Keywords:amenability, Arens regularity, co-amenability, locally compact quantum group, homological property
Categories:46L89, 43A07, 46H20, 46M10, 58B32

2. CMB 2013 (vol 57 pp. 546)

Kalantar, Mehrdad
Compact Operators in Regular LCQ Groups
We show that a regular locally compact quantum group $\mathbb{G}$ is discrete if and only if $\mathcal{L}^{\infty}(\mathbb{G})$ contains non-zero compact operators on $\mathcal{L}^{2}(\mathbb{G})$. As a corollary we classify all discrete quantum groups among regular locally compact quantum groups $\mathbb{G}$ where $\mathcal{L}^{1}(\mathbb{G})$ has the Radon--Nikodym property.

Keywords:locally compact quantum groups, regularity, compact operators

3. CMB 2012 (vol 57 pp. 424)

Sołtan, Piotr M.; Viselter, Ami
A Note on Amenability of Locally Compact Quantum Groups
In this short note we introduce a notion called ``quantum injectivity'' of locally compact quantum groups, and prove that it is equivalent to amenability of the dual. Particularly, this provides a new characterization of amenability of locally compact groups.

Keywords:amenability, conditional expectation, injectivity, locally compact quantum group, quantum injectivity
Categories:20G42, 22D25, 46L89

© Canadian Mathematical Society, 2016 :