CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword lattice

  Expand all        Collapse all Results 1 - 9 of 9

1. CMB Online first

Tărnăuceanu, Marius
On Finite Groups with Dismantlable Subgroup Lattices
In this note we study the finite groups whose subgroup lattices are dismantlable.

Keywords:finite groups, subgroup lattices, dismantlable lattices, planar lattices, crowns
Categories:20D30, 20D60, 20E15

2. CMB 2014 (vol 57 pp. 277)

Elkholy, A. M.; El-Latif, M. H. Abd
On Mutually $m$-permutable Product of Smooth Groups
Let $G$ be a finite group and $H$, $K$ two subgroups of G. A group $G$ is said to be a mutually m-permutable product of $H$ and $K$ if $G=HK$ and every maximal subgroup of $H$ permutes with $K$ and every maximal subgroup of $K$ permutes with $H$. In this paper, we investigate the structure of a finite group which is a mutually m-permutable product of two subgroups under the assumption that its maximal subgroups are totally smooth.

Keywords:permutable subgroups, $m$-permutable, smooth groups, subgroup lattices
Categories:20D10, 20D20, 20E15, 20F16

3. CMB 2012 (vol 57 pp. 132)

Mubeena, T.; Sankaran, P.
Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups
Given a group automorphism $\phi:\Gamma\longrightarrow \Gamma$, one has an action of $\Gamma$ on itself by $\phi$-twisted conjugacy, namely, $g.x=gx\phi(g^{-1})$. The orbits of this action are called $\phi$-twisted conjugacy classes. One says that $\Gamma$ has the $R_\infty$-property if there are infinitely many $\phi$-twisted conjugacy classes for every automorphism $\phi$ of $\Gamma$. In this paper we show that $\operatorname{SL}(n,\mathbb{Z})$ and its congruence subgroups have the $R_\infty$-property. Further we show that any (countable) abelian extension of $\Gamma$ has the $R_\infty$-property where $\Gamma$ is a torsion free non-elementary hyperbolic group, or $\operatorname{SL}(n,\mathbb{Z}), \operatorname{Sp}(2n,\mathbb{Z})$ or a principal congruence subgroup of $\operatorname{SL}(n,\mathbb{Z})$ or the fundamental group of a complete Riemannian manifold of constant negative curvature.

Keywords:twisted conjugacy classes, hyperbolic groups, lattices in Lie groups
Category:20E45

4. CMB 2011 (vol 56 pp. 659)

Yu, Zhi-Xian; Mei, Ming
Asymptotics and Uniqueness of Travelling Waves for Non-Monotone Delayed Systems on 2D Lattices
We establish asymptotics and uniqueness (up to translation) of travelling waves for delayed 2D lattice equations with non-monotone birth functions. First, with the help of Ikehara's Theorem, the a priori asymptotic behavior of travelling wave is exactly derived. Then, based on the obtained asymptotic behavior, the uniqueness of the traveling waves is proved. These results complement earlier results in the literature.

Keywords:2D lattice systems, traveling waves, asymptotic behavior, uniqueness, nonmonotone nonlinearity
Category:35K57

5. CMB 2011 (vol 54 pp. 645)

Flores, André Luiz; Interlando, J. Carmelo; Neto, Trajano Pires da Nóbrega
An Extension of Craig's Family of Lattices
Let $p$ be a prime, and let $\zeta_p$ be a primitive $p$-th root of unity. The lattices in Craig's family are $(p-1)$-dimensional and are geometrical representations of the integral $\mathbb Z[\zeta_p]$-ideals $\langle 1-\zeta_p \rangle^i$, where $i$ is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions $p-1$ where $149 \leq p \leq 3001$, Craig's lattices are the densest packings known. Motivated by this, we construct $(p-1)(q-1)$-dimensional lattices from the integral $\mathbb Z[\zeta _{pq}]$-ideals $\langle 1-\zeta_p \rangle^i \langle 1-\zeta_q \rangle^j$, where $p$ and $q$ are distinct primes and $i$ and $j$ are positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.

Keywords:geometry of numbers, lattice packing, Craig's lattices, quadratic forms, cyclotomic fields
Categories:11H31, 11H55, 11H50, 11R18, 11R04

6. CMB 2011 (vol 54 pp. 277)

Farley, Jonathan David
Maximal Sublattices of Finite Distributive Lattices. III: A Conjecture from the 1984 Banff Conference on Graphs and Order
Let $L$ be a finite distributive lattice. Let $\operatorname{Sub}_0(L)$ be the lattice $$ \{S\mid S\text{ is a sublattice of }L\}\cup\{\emptyset\} $$ and let $\ell_*[\operatorname{Sub}_0(L)]$ be the length of the shortest maximal chain in $\operatorname{Sub}_0(L)$. It is proved that if $K$ and $L$ are non-trivial finite distributive lattices, then $$ \ell_*[\operatorname{Sub}_0(K\times L)]=\ell_*[\operatorname{Sub}_0(K)]+\ell_*[\operatorname{Sub}_0(L)]. $$ A conjecture from the 1984 Banff Conference on Graphs and Order is thus proved.

Keywords:(distributive) lattice, maximal sublattice, (partially) ordered set
Categories:06D05, 06D50, 06A07

7. CMB 2008 (vol 51 pp. 15)

Aqzzouz, Belmesnaoui; Nouira, Redouane; Zraoula, Larbi
The Duality Problem for the Class of AM-Compact Operators on Banach Lattices
We prove the converse of a theorem of Zaanen about the duality problem of positive AM-compact operators.

Keywords:AM-compact operator, order continuous norm, discrete vector lattice
Categories:46A40, 46B40, 46B42

8. CMB 2004 (vol 47 pp. 191)

Grätzer, G.; Schmidt, E. T.
Congruence Class Sizes in Finite Sectionally Complemented Lattices
The congruences of a finite sectionally complemented lattice $L$ are not necessarily \emph{uniform} (any two congruence classes of a congruence are of the same size). To measure how far a congruence $\Theta$ of $L$ is from being uniform, we introduce $\Spec\Theta$, the \emph{spectrum} of $\Theta$, the family of cardinalities of the congruence classes of $\Theta$. A typical result of this paper characterizes the spectrum $S = (m_j \mid j < n)$ of a nontrivial congruence $\Theta$ with the following two properties: \begin{enumerate}[$(S_2)$] \item[$(S_1)$] $2 \leq n$ and $n \neq 3$. \item[$(S_2)$] $2 \leq m_j$ and $m_j \neq 3$, for all $j
Keywords:congruence lattice, congruence-preserving extension
Categories:06B10, 06B15

9. CMB 2002 (vol 45 pp. 483)

Baake, Michael
Diffraction of Weighted Lattice Subsets
A Dirac comb of point measures in Euclidean space with bounded complex weights that is supported on a lattice $\varGamma$ inherits certain general properties from the lattice structure. In particular, its autocorrelation admits a factorization into a continuous function and the uniform lattice Dirac comb, and its diffraction measure is periodic, with the dual lattice $\varGamma^*$ as lattice of periods. This statement remains true in the setting of a locally compact Abelian group whose topology has a countable base.

Keywords:diffraction, Dirac combs, lattice subsets, homometric sets
Categories:52C07, 43A25, 52C23, 43A05

© Canadian Mathematical Society, 2014 : https://cms.math.ca/