Expand all Collapse all | Results 1 - 9 of 9 |
1. CMB 2014 (vol 57 pp. 431)
The Rasmussen Invariant, Four-genus and Three-genus of an Almost Positive Knot Are Equal An oriented link is positive if it has a link diagram whose crossings are all positive.
An oriented link is almost positive if it is not positive and has a link diagram with exactly one negative crossing.
It is known that the Rasmussen invariant, $4$-genus and $3$-genus of a positive knot are equal.
In this paper, we prove that the Rasmussen invariant, $4$-genus and $3$-genus of an almost positive knot are equal.
Moreover, we determine the Rasmussen invariant of an almost positive knot in terms of its almost positive knot diagram.
As corollaries, we prove that all almost positive knots are not homogeneous, and there is no almost positive knot of $4$-genus one.
Keywords:almost positive knot, four-genus, Rasmussen invariant Categories:57M27, 57M25 |
2. CMB 2012 (vol 56 pp. 850)
Left-orderability and Exceptional Dehn Surgery on Twist Knots We show that any exceptional non-trivial Dehn surgery on a twist knot, except the trefoil,
yields a $3$-manifold whose fundamental group is left-orderable.
This is a generalization of a result of Clay, Lidman and Watson, and
also gives a new supporting evidence for a conjecture of Boyer, Gordon and Watson.
Keywords:left-ordering, twist knot, Dehn surgery Categories:57M25, 06F15 |
3. CMB 2010 (vol 53 pp. 438)
Near-Homeomorphisms of Nöbeling Manifolds We characterize maps between $n$-dimensional NÃ¶beling manifolds that can be approximated by homeomorphisms.
Keywords:n-dimensional Nöbeling manifold, Z-set unknotting, near-homeomorphism Categories:55M10, 54F45 |
4. CMB 2006 (vol 49 pp. 624)
On Non-Integral Dehn Surgeries Creating Non-Orientable Surfaces For a non-trivial knot in the $3$-sphere,
only integral Dehn surgery can create a closed $3$-manifold containing a projective plane.
If we restrict ourselves to hyperbolic knots, the corresponding claim for a Klein bottle is still true.
In contrast to these, we show that non-integral surgery on a hyperbolic knot
can create a closed non-orientable surface of any genus greater than two.
Keywords:knot, Dehn surgery, non-orientable surface Category:57M25 |
5. CMB 2006 (vol 49 pp. 55)
Non Abelian Twisted Reidemeister Torsion for Fibered Knots In this article, we give an explicit formula to compute the
non abelian twisted sign-deter\-mined Reidemeister torsion of the
exterior of a fibered knot in terms of its monodromy. As an
application, we give explicit formulae for the non abelian
Reidemeister torsion of torus knots and of the figure eight knot.
Keywords:Reidemeister torsion, Fibered knots, Knot groups, Representation space, $\SU$, $\SL$, Adjoint representation, Monodromy Categories:57Q10, 57M27, 57M25 |
6. CMB 2002 (vol 45 pp. 231)
Erratum:~~The Lehmer Polynomial and Pretzel Links Erratum to {\it The Lehmer Polynomial and Pretzel Links},
Canad. J. Math. {\bf 44}(2001), 440--451.
Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groups Categories:57M05, 57M25, 11R04, 11R27 |
7. CMB 2001 (vol 44 pp. 440)
The Lehmer Polynomial and Pretzel Links In this paper we find a formula for the Alexander polynomial
$\Delta_{p_1,\dots,p_k} (x)$ of pretzel knots and links with
$(p_1,\dots,p_k, \nega 1)$ twists, where $k$ is odd and
$p_1,\dots,p_k$ are positive integers. The polynomial $\Delta_{2,3,7}
(x)$ is the well-known Lehmer polynomial, which is conjectured to have
the smallest Mahler measure among all monic integer polynomials. We
confirm that $\Delta_{2,3,7} (x)$ has the smallest Mahler measure among
the polynomials arising as $\Delta_{p_1,\dots,p_k} (x)$.
Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groups Categories:57M05, 57M25, 11R04, 11R27 |
8. CMB 1999 (vol 42 pp. 190)
Topological Quantum Field Theory and Strong Shift Equivalence Given a TQFT in dimension $d+1,$ and an infinite cyclic covering of
a closed $(d+1)$-dimensional manifold $M$, we define an invariant
taking values in a strong shift equivalence class of matrices. The
notion of strong shift equivalence originated in R.~Williams' work
in symbolic dynamics. The Turaev-Viro module associated to a TQFT
and an infinite cyclic covering is then given by the Jordan form of
this matrix away from zero. This invariant is also defined if the
boundary of $M$ has an $S^1$ factor and the infinite cyclic cover
of the boundary is standard. We define a variant of a TQFT
associated to a finite group $G$ which has been studied by Quinn.
In this way, we recover a link invariant due to D.~Silver and
S.~Williams. We also obtain a variation on the Silver-Williams
invariant, by using the TQFT associated to $G$ in its unmodified form.
Keywords:knot, link, TQFT, symbolic dynamics, shift equivalence Categories:57R99, 57M99, 54H20 |
9. CMB 1997 (vol 40 pp. 309)
On the homology of finite abelian coverings of links Let $A$ be a finite abelian group and $M$ be a
branched cover of an homology $3$-sphere, branched over a link $L$,
with covering group $A$. We show that $H_1(M;Z[1/|A|])$ is determined
as a $Z[1/|A|][A]$-module by the Alexander ideals of $L$ and certain
ideal class invariants.
Keywords:Alexander ideal, branched covering, Dedekind domain,, knot, link. Category:57M25 |