1. CMB 2012 (vol 57 pp. 51)
 Fošner, Ajda; Lee, TsiuKwen

Jordan $*$Derivations of FiniteDimensional Semiprime Algebras
In the paper, we characterize Jordan $*$derivations of a $2$torsion
free, finitedimensional semiprime algebra $R$ with involution $*$. To
be precise, we prove the theorem: Let $deltacolon R o R$ be a Jordan
$*$derivation. Then there exists a $*$algebra decomposition
$R=Uoplus V$ such that both $U$ and $V$ are invariant under
$delta$. Moreover, $*$ is the identity map of $U$ and $delta,_U$ is a
derivation, and the Jordan $*$derivation $delta,_V$ is inner.
We also prove the theorem: Let $R$ be a noncommutative, centrally
closed prime algebra with involution $*$, $operatorname{char},R
e 2$,
and let $delta$ be a nonzero Jordan $*$derivation of $R$. If $delta$ is
an elementary operator of $R$, then $operatorname{dim}_CRlt infty$ and
$delta$ is inner.
Keywords:semiprime algebra, involution, (inner) Jordan $*$derivation, elementary operator Categories:16W10, 16N60, 16W25 

2. CMB 2011 (vol 55 pp. 164)
 Pergher, Pedro L. Q.

Involutions Fixing $F^n \cup \{\text{Indecomposable}\}$
Let $M^m$ be an $m$dimensional, closed and smooth manifold, equipped with a smooth involution $T\colon M^m \to M^m$ whose fixed point set has the form $F^n \cup F^j$, where $F^n$ and $F^j$ are submanifolds with dimensions $n$ and $j$, $F^j$ is indecomposable and $ n >j$. Write $nj=2^pq$, where $q \ge 1$ is odd and $p \geq 0$, and set $m(nj) = 2n+pq+1$ if $p \leq q + 1$
and $m(nj)= 2n + 2^{pq}$ if $p \geq q$. In this paper we show that $m \le m(nj) + 2j+1$. Further, we show that this bound is \emph{almost} best possible, by exhibiting examples $(M^{m(nj) +2j},T)$ where the fixed point set of
$T$ has the form $F^n \cup F^j$ described above, for every $2 \le j
Keywords:involution, projective space bundle, indecomposable manifold, splitting principle, StiefelWhitney class, characteristic number Category:57R85 

3. CMB 2009 (vol 52 pp. 39)
 Cimpri\v{c}, Jakob

A Representation Theorem for Archimedean Quadratic Modules on $*$Rings
We present a new approach to noncommutative real algebraic geometry
based on the representation theory of $C^\ast$algebras.
An important result in commutative real algebraic geometry is
Jacobi's representation theorem for archimedean quadratic modules
on commutative rings.
We show that this theorem is a consequence of the
GelfandNaimark representation theorem for commutative $C^\ast$algebras.
A noncommutative version of GelfandNaimark theory was studied by
I. Fujimoto. We use his results to generalize
Jacobi's theorem to associative rings with involution.
Keywords:Ordered rings with involution, $C^\ast$algebras and their representations, noncommutative convexity theory, real algebraic geometry Categories:16W80, 46L05, 46L89, 14P99 

4. CMB 2007 (vol 50 pp. 105)
 Klep, Igor

On Valuations, Places and Graded Rings Associated to $*$Orderings
We study natural $*$valuations, $*$places and graded $*$rings
associated with $*$ordered rings.
We prove that the natural $*$valuation is always quasiOre and is
even quasicommutative (\emph{i.e.,} the corresponding graded $*$ring is
commutative), provided the ring contains an imaginary unit.
Furthermore, it is proved that the graded $*$ring is isomorphic
to a twisted semigroup algebra. Our results are applied to answer a question
of Cimpri\v c regarding $*$orderability of quantum
groups.
Keywords:$*$orderings, valuations, rings with involution Categories:14P10, 16S30, 16W10 

5. CMB 2005 (vol 48 pp. 561)
 Foth, Philip

A Note on Lagrangian Loci of Quotients
We study Hamiltonian actions of compact groups in the presence of
compatible involutions. We show that the Lagrangian fixed point set
on the symplectically reduced space is isomorphic to the disjoint
union of the involutively reduced spaces corresponding to
involutions on the group strongly inner to the given one.
Our techniques imply that the solution to the eigenvalues of a sum problem
for a given real form can be reduced to the quasisplit real form in the
same inner class. We also consider invariant quotients with respect to
the corresponding real form of the complexified group.
Keywords:Quotients, involutions, real forms, Lagrangian loci Category:53D20 
