1. CMB 2010 (vol 54 pp. 141)
 Kim, Sang Og; Park, Choonkil

Linear Maps on $C^*$Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$
For $C^*$algebras $\mathcal{A}$ of real rank zero, we describe
linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals
$\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if
$\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and
$\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar
linear maps preserving zero products on the Calkin algebra.
Keywords:preservers, Jordan automorphisms, invertible operators, zero products Categories:47B48, 47A10, 46H10 

2. CMB 2003 (vol 46 pp. 216)
 Li, ChiKwong; Rodman, Leiba; Šemrl, Peter

Linear Maps on Selfadjoint Operators Preserving Invertibility, Positive Definiteness, Numerical Range
Let $H$ be a complex Hilbert space, and $\HH$ be the real linear space of
bounded selfadjoint operators on $H$. We study linear maps $\phi\colon \HH
\to \HH$ leaving invariant various properties such as invertibility, positive
definiteness, numerical range, {\it etc}. The maps $\phi$ are not assumed
{\it a priori\/} continuous. It is shown that under an appropriate surjective
or injective assumption $\phi$ has the form $X \mapsto \xi TXT^*$ or $X \mapsto
\xi TX^tT^*$, for a suitable invertible or unitary $T$ and $\xi\in\{1, 1\}$,
where $X^t$ stands for the transpose of $X$ relative to some orthonormal basis.
Examples are given to show that the surjective or injective assumption cannot
be relaxed. The results are extended to complex linear maps on the algebra of
bounded linear operators on $H$. Similar results are proved for the (real)
linear space of (selfadjoint) operators of the form $\alpha I+K$, where $\alpha$
is a scalar and $K$ is compact.
Keywords:linear map, selfadjoint operator, invertible, positive definite, numerical range Categories:47B15, 47B49 
