1. CMB 2011 (vol 54 pp. 506)
 Neamaty, A.; Mosazadeh, S.

On the Canonical Solution of the SturmLiouville Problem with Singularity and Turning Point of Even Order
In this paper, we are going to investigate the canonical property of solutions of
systems of differential equations having a singularity and turning
point of even order. First, by a replacement, we transform the system
to the SturmLiouville equation with turning point. Using of the
asymptotic estimates provided by Eberhard, Freiling, and Schneider
for a special fundamental system of solutions of the SturmLiouville
equation, we study the infinite product representation of solutions of the systems. Then we
transform the SturmLiouville equation with
turning point to the
equation with singularity, then we study the asymptotic behavior of its solutions. Such
representations are relevant to the inverse spectral problem.
Keywords:turning point, singularity, SturmLiouville, infinite products, Hadamard's theorem, eigenvalues Categories:34B05, 34Lxx, 47E05 

2. CMB 2009 (vol 52 pp. 481)
 Alaca, Ay\c{s}e; Alaca, \c{S}aban; Williams, Kenneth S.

Some Infinite Products of Ramanujan Type
In his ``lost'' notebook, Ramanujan stated two results, which are equivalent to the identities
\[
\prod_{n=1}^{\infty} \frac{(1q^n)^5}{(1q^{5n})}
=15\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{d} d \Big) q^n
\]
and
\[
q\prod_{n=1}^{\infty} \frac{(1q^{5n})^5}{(1q^{n})}
=\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{n/d} d \Big) q^n.
\]
We give several more identities of this type.
Keywords:Power series expansions of certain infinite products Categories:11E25, 11F11, 11F27, 30B10 
