location:  Publications → journals
Search results

Search: All articles in the CMB digital archive with keyword idempotent

 Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Wang, Long; Castro-Gonzalez, Nieves; Chen, Jianlong
 Characterizations of outer generalized inverses Let $R$ be a ring and $b, c\in R$. In this paper, we give some characterizations of the $(b,c)$-inverse, in terms of the direct sum decomposition, the annihilator and the invertible elements. Moreover, elements with equal $(b,c)$-idempotents related to their $(b, c)$-inverses are characterized, and the reverse order rule for the $(b,c)$-inverse is considered. Keywords:$(b, c)$-inverse, $(b, c)$-idempotent, regularity, image-kernel $(p, q)$-inverse, ringCategories:15A09, 16U99

2. CMB 2016 (vol 59 pp. 661)

Ying, Zhiling; Koşan, Tamer; Zhou, Yiqiang
 Rings in Which Every Element is a Sum of Two Tripotents Let $R$ be a ring. The following results are proved: $(1)$ every element of $R$ is a sum of an idempotent and a tripotent that commute iff $R$ has the identity $x^6=x^4$ iff $R\cong R_1\times R_2$, where $R_1/J(R_1)$ is Boolean with $U(R_1)$ a group of exponent $2$ and $R_2$ is zero or a subdirect product of $\mathbb Z_3$'s; $(2)$ every element of $R$ is either a sum or a difference of two commuting idempotents iff $R\cong R_1\times R_2$, where $R_1/J(R_1)$ is Boolean with $J(R_1)=0$ or $J(R_1)=\{0,2\}$, and $R_2$ is zero or a subdirect product of $\mathbb Z_3$'s; $(3)$ every element of $R$ is a sum of two commuting tripotents iff $R\cong R_1\times R_2\times R_3$, where $R_1/J(R_1)$ is Boolean with $U(R_1)$ a group of exponent $2$, $R_2$ is zero or a subdirect product of $\mathbb Z_3$'s, and $R_3$ is zero or a subdirect product of $\mathbb Z_5$'s. Keywords:idempotent, tripotent, Boolean ring, polynomial identity $x^3=x$, polynomial identity $x^6=x^4$, polynomial identity $x^8=x^4$Categories:16S50, 16U60, 16U90

3. CMB 2011 (vol 54 pp. 654)

Forrest, Brian E.; Runde, Volker
 Norm One Idempotent $cb$-Multipliers with Applications to the Fourier Algebra in the $cb$-Multiplier Norm For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$-amenable in the sense of B. E. Johnson. (We can even slightly relax the norm bounds.) Keywords:amenability, bounded approximate identity, $cb$-multiplier norm, Fourier algebra, norm one idempotentCategories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25
 top of page | contact us | privacy | site map |