26. CMB 2003 (vol 46 pp. 268)
 Puls, Michael J.

Group Cohomology and $L^p$Cohomology of Finitely Generated Groups
Let $G$ be a finitely generated, infinite group, let $p>1$, and let
$L^p(G)$ denote the Banach space $\{ \sum_{x\in G} a_xx \mid \sum_{x\in
G} a_x ^p < \infty \}$. In this paper we will study the first
cohomology group of $G$ with coefficients in $L^p(G)$, and the first
reduced $L^p$cohomology space of $G$. Most of our results will be for a
class of groups that contains all finitely generated, infinite nilpotent
groups.
Keywords:group cohomology, $L^p$cohomology, central element of infinite order, harmonic function, continuous linear functional Categories:43A15, 20F65, 20F18 

27. CMB 2000 (vol 43 pp. 3)
 Adin, Ron; Blanc, David

Resolutions of Associative and Lie Algebras
Certain canonical resolutions are described for free associative and
free Lie algebras in the category of nonassociative algebras. These
resolutions derive in both cases from geometric objects, which in turn
reflect the combinatorics of suitable collections of leaflabeled
trees.
Keywords:resolutions, homology, Lie algebras, associative algebras, nonassociative algebras, Jacobi identity, leaflabeled trees, associahedron Categories:18G10, 05C05, 16S10, 17B01, 17A50, 18G50 

28. CMB 1999 (vol 42 pp. 129)
 Baker, Andrew

Hecke Operations and the Adams $E_2$Term Based on Elliptic Cohomology
Hecke operators are used to investigate part of the $\E_2$term of
the Adams spectral sequence based on elliptic homology. The main
result is a derivation of $\Ext^1$ which combines use of classical
Hecke operators and $p$adic Hecke operators due to Serre.
Keywords:Adams spectral sequence, elliptic cohomology, Hecke operators Categories:55N20, 55N22, 55T15, 11F11, 11F25 

29. CMB 1997 (vol 40 pp. 54)
 Kechagias, Nondas E.

A note on $U_n\times U_m$ modular invariants
We consider the rings of invariants $R^G$, where $R$ is the symmetric
algebra of a tensor product between two vector spaces over the field $F_p$
and $G=U_n\times U_m$. A polynomial algebra is constructed and these
invariants provide Chern classes for the modular cohomology of $U_{n+m}$.
Keywords:Invariant theory, cohomology of the unipotent group Category:13F20 
