Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword homogeneous space

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 56 pp. 225)

Agashe, Amod
On the Notion of Visibility of Torsors
Let $J$ be an abelian variety and $A$ be an abelian subvariety of $J$, both defined over $\mathbf{Q}$. Let $x$ be an element of $H^1(\mathbf{Q},A)$. Then there are at least two definitions of $x$ being visible in $J$: one asks that the torsor corresponding to $x$ be isomorphic over $\mathbf{Q}$ to a subvariety of $J$, and the other asks that $x$ be in the kernel of the natural map $H^1(\mathbf{Q},A) \to H^1(\mathbf{Q},J)$. In this article, we clarify the relation between the two definitions.

Keywords:torsors, principal homogeneous spaces, visibility, Shafarevich-Tate group
Categories:11G35, 14G25

2. CMB 2009 (vol 53 pp. 218)

Biswas, Indranil
Restriction of the Tangent Bundle of $G/P$ to a Hypersurface
Let P be a maximal proper parabolic subgroup of a connected simple linear algebraic group G, defined over $\mathbb C$, such that $n := \dim_{\mathbb C} G/P \geq 4$. Let $\iota \colon Z \hookrightarrow G/P$ be a reduced smooth hypersurface of degree at least $(n-1)\cdot \operatorname{degree}(T(G/P))/n$. We prove that the restriction of the tangent bundle $\iota^*TG/P$ is semistable.

Keywords:tangent bundle, homogeneous space, semistability, hypersurface
Categories:14F05, 14J60, 14M15

3. CMB 1999 (vol 42 pp. 463)

Hofmann, Steve; Li, Xinwei; Yang, Dachun
A Generalized Characterization of Commutators of Parabolic Singular Integrals
Let $x=(x_1, \dots, x_n)\in\rz$ and $\dz_\lz x=(\lz^{\az_1}x_1, \dots,\lz^{\az_n}x_n)$, where $\lz>0$ and $1\le \az_1\le\cdots \le\az_n$. Denote $|\az|=\az_1+\cdots+\az_n$. We characterize those functions $A(x)$ for which the parabolic Calder\'on commutator $$ T_{A}f(x)\equiv \pv \int_{\mathbb{R}^n} K(x-y)[A(x)-A(y)]f(y)\,dy $$ is bounded on $L^2(\mathbb{R}^n)$, where $K(\dz_\lz x)=\lz^{-|\az|-1}K(x)$, $K$ is smooth away from the origin and satisfies a certain cancellation property.

Keywords:parabolic singular integral, commutator, parabolic $\BMO$ sobolev space, homogeneous space, T1-theorem, symbol

© Canadian Mathematical Society, 2014 :