Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword holomorphic

  Expand all        Collapse all Results 1 - 12 of 12

1. CMB Online first

Gauthier, P. M.
Non-extendable zero sets of harmonic and holomorphic functions
In this paper we study the zero sets of harmonic functions on open sets in $\mathbb{R}^N$ and holomorphic functions on open sets in $\mathbb{C}^N.$ We show that the non-extendability of such zero sets is a generic phenomenon.

Keywords:boundary behaviour, harmonic, holomorphic, zero sets

2. CMB 2015 (vol 58 pp. 350)

Merino-Cruz, Héctor; Wawrzynczyk, Antoni
On Closed Ideals in a Certain Class of Algebras of Holomorphic Functions
We recently introduced a weighted Banach algebra $\mathfrak{A}_G^n$ of functions which are holomorphic on the unit disc $\mathbb{D}$, continuous up to the boundary and of the class $C^{(n)}$ at all points where the function $G$ does not vanish. Here, $G$ refers to a function of the disc algebra without zeros on $\mathbb{D}$. Then we proved that all closed ideals in $\mathfrak{A}_G^n$ with at most countable hull are standard. In the present paper, on the assumption that $G$ is an outer function in $C^{(n)}(\overline{\mathbb{D}})$ having infinite roots in $\mathfrak{A}_G^n$ and countable zero set $h(G)$, we show that all the closed ideals $I$ with hull containing $h(G)$ are standard.

Keywords:Banach algebra, disc algebra, holomorphic spaces, standard ideal
Categories:46J15, 46J20, 30H50

3. CMB 2015 (vol 58 pp. 381)

Tang, Xiaomin; Liu, Taishun
The Schwarz Lemma at the Boundary of the Egg Domain $B_{p_1, p_2}$ in $\mathbb{C}^n$
Let $B_{p_1, p_2}=\{z\in\mathbb{C}^n: |z_1|^{p_1}+|z_2|^{p_2}+\cdots+|z_n|^{p_2}\lt 1\}$ be an egg domain in $\mathbb{C}^n$. In this paper, we first characterize the Kobayashi metric on $B_{p_1, p_2}\,(p_1\geq 1, p_2\geq 1)$, and then establish a new type of the classical boundary Schwarz lemma at $z_0\in\partial{B_{p_1, p_2}}$ for holomorphic self-mappings of $B_{p_1, p_2}(p_1\geq 1, p_2\gt 1)$, where $z_0=(e^{i\theta}, 0, \dots, 0)'$ and $\theta\in \mathbb{R}$.

Keywords:holomorphic mapping, Schwarz lemma, Kobayashi metric, egg domain
Categories:32H02, 30C80, 32A30

4. CMB 2011 (vol 56 pp. 31)

Ayuso, Fortuny P.
Derivations and Valuation Rings
A complete characterization of valuation rings closed for a holomorphic derivation is given, following an idea of Seidenberg, in dimension $2$.

Keywords:singular holomorphic foliation, derivation, valuation, valuation ring
Categories:32S65, 13F30, 13A18

5. CMB 2009 (vol 52 pp. 84)

Gauthier, P. M.; Zeron, E. S.
Hartogs' Theorem on Separate Holomorphicity for Projective Spaces
If a mapping of several complex variables into projective space is holomorphic in each pair of variables, then it is globally holomorphic.

Keywords:separately holomorphic, projective space
Categories:32A10, 32D99, 32H99

6. CMB 2008 (vol 51 pp. 618)

Valmorin, V.
Vanishing Theorems in Colombeau Algebras of Generalized Functions
Using a canonical linear embedding of the algebra ${\mathcal G}^{\infty}(\Omega)$ of Colombeau generalized functions in the space of $\overline{\C}$-valued $\C$-linear maps on the space ${\mathcal D}(\Omega)$ of smooth functions with compact support, we give vanishing conditions for functions and linear integral operators of class ${\mathcal G}^\infty$. These results are then applied to the zeros of holomorphic generalized functions in dimension greater than one.

Keywords:Colombeau generalized functions, linear integral operators, generalized holomorphic functions
Categories:32A60, 45P05, 46F30

7. CMB 2007 (vol 50 pp. 579)

Kot, Piotr
$p$-Radial Exceptional Sets and Conformal Mappings
For $p>0$ and for a given set $E$ of type $G_{\delta}$ in the boundary of the unit disc $\partial\mathbb D$ we construct a holomorphic function $f\in\mathbb O(\mathbb D)$ such that \[ \int_{\mathbb D\setminus[0,1]E}|ft|^{p}\,d\mathfrak{L}^{2}<\infty\] and\[ E=E^{p}(f)=\Bigl\{ z\in\partial\mathbb D:\int_{0}^{1}|f(tz)|^{p}\,dt=\infty\Bigr\} .\] In particular if a set $E$ has a measure equal to zero, then a function $f$ is constructed as integrable with power $p$ on the unit disc $\mathbb D$.

Keywords:boundary behaviour of holomorphic functions, exceptional sets
Categories:30B30, 30E25

8. CMB 2005 (vol 48 pp. 580)

Kot, Piotr
Exceptional Sets in Hartogs Domains
Assume that $\Omega$ is a Hartogs domain in $\mathbb{C}^{1+n}$, defined as $\Omega=\{(z,w)\in\mathbb{C}^{1+n}:|z|<\mu(w),w\in H\}$, where $H$ is an open set in $\mathbb{C}^{n}$ and $\mu$ is a continuous function with positive values in $H$ such that $-\ln\mu$ is a strongly plurisubharmonic function in $H$. Let $\Omega_{w}=\Omega\cap(\mathbb{C}\times\{w\})$. For a given set $E$ contained in $H$ of the type $G_{\delta}$ we construct a holomorphic function $f\in\mathbb{O}(\Omega)$ such that \[ E=\Bigl\{ w\in\mathbb{C}^{n}:\int_{\Omega_{w}}|f(\cdot\,,w)|^{2}\,d\mathfrak{L}^{2}=\infty\Bigr\}. \]

Keywords:boundary behaviour of holomorphic functions,, exceptional sets

9. CMB 2005 (vol 48 pp. 500)

Baracco, Luca
Extension of Holomorphic Functions From One Side of a Hypersurface
We give a new proof of former results by G. Zampieri and the author on extension of holomorphic functions from one side $\Omega$ of a real hypersurface $M$ of $\mathbb{C}^n$ in the presence of an analytic disc tangent to $M$, attached to $\bar\Omega$ but not to $M$. Our method enables us to weaken the regularity assumptions both for the hypersurface and the disc.

Keywords:analytic discs, Poisson integral, holomorphic extension
Categories:32D10, 32V25

10. CMB 2001 (vol 44 pp. 126)

Zeron, E. Santillan
Each Copy of the Real Line in $\C^2$ is Removable
Around 1995, Professors Lupacciolu, Chirka and Stout showed that a closed subset of $\C^N$ ($N\geq 2$) is removable for holomorphic functions, if its topological dimension is less than or equal to $N-2$. Besides, they asked whether closed subsets of $\C^2$ homeomorphic to the real line (the simplest 1-dimensional sets) are removable for holomorphic functions. In this paper we propose a positive answer to that question.

Keywords:holomorphic function, removable set

11. CMB 2000 (vol 43 pp. 294)

Bracci, Filippo
Fixed Points of Commuting Holomorphic Maps Without Boundary Regularity
We identify a class of domains of $\C^n$ in which any two commuting holomorphic self-maps have a common fixed point.

Keywords:Holomorphic self-maps, commuting functions, fixed points, Wolff point, Julia's Lemma
Categories:32A10, 32A40, 32H15, 32A30

12. CMB 1999 (vol 42 pp. 139)

Bonet, José; Domański, Paweł; Lindström, Mikael
Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions
Every weakly compact composition operator between weighted Banach spaces $H_v^{\infty}$ of analytic functions with weighted sup-norms is compact. Lower and upper estimates of the essential norm of continuous composition operators are obtained. The norms of the point evaluation functionals on the Banach space $H_v^{\infty}$ are also estimated, thus permitting to get new characterizations of compact composition operators between these spaces.

Keywords:weighted Banach spaces of holomorphic functions, composition operator, compact operator, weakly compact operator
Categories:47B38, 30D55, 46E15

© Canadian Mathematical Society, 2015 :