CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword group rings

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Gonçalves, Daniel
Simplicity of Partial Skew Group Rings of Abelian Groups
Let $A$ be a ring with local units, $E$ a set of local units for $A$, $G$ an abelian group and $\alpha$ a partial action of $G$ by ideals of $A$ that contain local units. We show that $A\star_{\alpha} G$ is simple if and only if $A$ is $G$-simple and the center of the corner $e\delta_0 (A\star_{\alpha} G) e \delta_0$ is a field for all $e\in E$. We apply the result to characterize simplicity of partial skew group rings in two cases, namely for partial skew group rings arising from partial actions by clopen subsets of a compact set and partial actions on the set level.

Keywords:partial skew group rings, simple rings, partial actions, abelian groups
Categories:16S35, 37B05

2. CMB 2012 (vol 57 pp. 326)

Ivanov, S. V.; Mikhailov, Roman
On Zero-divisors in Group Rings of Groups with Torsion
Nontrivial pairs of zero-divisors in group rings are introduced and discussed. A problem on the existence of nontrivial pairs of zero-divisors in group rings of free Burnside groups of odd exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of zero-divisors are also found in group rings of free products of groups with torsion.

Keywords:Burnside groups, free products of groups, group rings, zero-divisors
Categories:20C07, 20E06, 20F05, , 20F50

3. CMB 2009 (vol 52 pp. 145)

Wang, Z.; Chen, J. L.
$2$-Clean Rings
A ring $R$ is said to be $n$-clean if every element can be written as a sum of an idempotent and $n$ units. The class of these rings contains clean rings and $n$-good rings in which each element is a sum of $n$ units. In this paper, we show that for any ring $R$, the endomorphism ring of a free $R$-module of rank at least 2 is $2$-clean and that the ring $B(R)$ of all $\omega\times \omega$ row and column-finite matrices over any ring $R$ is $2$-clean. Finally, the group ring $RC_{n}$ is considered where $R$ is a local ring.

Keywords:$2$-clean rings, $2$-good rings, free modules, row and column-finite matrix rings, group rings
Categories:16D70, 16D40, 16S50

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/