Expand all Collapse all | Results 1 - 4 of 4 |
1. CMB Online first
ZL-amenability Constants of Finite Groups with Two Character Degrees We calculate the exact amenability constant of the centre of
$\ell^1(G)$ when $G$ is one of the following classes of finite group:
dihedral; extraspecial; or Frobenius with abelian complement and
kernel. This is done using a formula which applies to all finite
groups with two character degrees. In passing, we answer in the
negative a question raised in work of the third author with Azimifard
and Spronk (J. Funct. Anal. 2009).
Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups Categories:43A20, 20C15 |
2. CMB 2008 (vol 51 pp. 291)
Group Algebras with Minimal Strong Lie Derived Length Let $KG$ be a non-commutative strongly Lie solvable group algebra of a
group $G$ over a field $K$ of positive characteristic $p$. In this
note we state necessary and sufficient conditions so that the
strong Lie derived length of $KG$ assumes its minimal value, namely
$\lceil \log_{2}(p+1)\rceil $.
Keywords:group algebras, strong Lie derived length Categories:16S34, 17B30 |
3. CMB 2004 (vol 47 pp. 343)
Combinatorics of Words and Semigroup Algebras Which Are Sums of Locally Nilpotent Subalgebras We construct new examples of non-nil algebras with any number of
generators, which are direct sums of two
locally nilpotent subalgebras. Like all previously known examples, our examples
are contracted semigroup algebras and the underlying semigroups are unions
of locally nilpotent subsemigroups.
In our constructions we make more
transparent
than in the past the close relationship between the considered problem
and combinatorics of words.
Keywords:locally nilpotent rings,, nil rings, locally nilpotent semigroups,, semigroup algebras, monomial algebras, infinite words Categories:16N40, 16S15, 20M05, 20M25, 68R15 |
4. CMB 1997 (vol 40 pp. 47)
A universal coefficient decomposition for subgroups induced by submodules of group algebras Dimension subgroups and Lie dimension subgroups are known to satisfy a
`universal coefficient decomposition', {\it i.e.} their value with respect to
an arbitrary coefficient ring can be described in terms of their values with
respect to the `universal' coefficient rings given by the cyclic groups of
infinite and prime power order. Here this fact is generalized to much more
general types of induced subgroups, notably covering Fox subgroups and
relative dimension subgroups with respect to group algebra filtrations
induced by arbitrary $N$-series, as well as certain common generalisations
of these which occur in the study of the former. This result relies on an
extension of the principal universal coefficient decomposition theorem on
polynomial ideals (due to Passi, Parmenter and Seghal), to all additive
subgroups of group rings. This is possible by using homological instead
of ring theoretical methods.
Keywords:induced subgroups, group algebras, Fox subgroups, relative dimension, subgroups, polynomial ideals Categories:20C07, 16A27 |