CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword gradient flow

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2016 (vol 59 pp. 673)

Bačák, Miroslav; Kovalev, Leonid V.
Lipschitz Retractions in Hadamard Spaces Via Gradient Flow Semigroups
Let $X(n),$ for $n\in\mathbb{N},$ be the set of all subsets of a metric space $(X,d)$ of cardinality at most $n.$ The set $X(n)$ equipped with the Hausdorff metric is called a finite subset space. In this paper we are concerned with the existence of Lipschitz retractions $r\colon X(n)\to X(n-1)$ for $n\ge2.$ It is known that such retractions do not exist if $X$ is the one-dimensional sphere. On the other hand L. Kovalev has recently established their existence in case $X$ is a Hilbert space and he also posed a question as to whether or not such Lipschitz retractions exist for $X$ being a Hadamard space. In the present paper we answer this question in the positive.

Keywords:finite subset space, gradient flow, Hadamard space, Lie-Trotter-Kato formula, Lipschitz retraction
Categories:53C23, 47H20, 54E40, 58D07

2. CMB 2011 (vol 55 pp. 723)

Gigli, Nicola; Ohta, Shin-Ichi
First Variation Formula in Wasserstein Spaces over Compact Alexandrov Spaces
We extend results proved by the second author (Amer. J. Math., 2009) for nonnegatively curved Alexandrov spaces to general compact Alexandrov spaces $X$ with curvature bounded below. The gradient flow of a geodesically convex functional on the quadratic Wasserstein space $(\mathcal P(X),W_2)$ satisfies the evolution variational inequality. Moreover, the gradient flow enjoys uniqueness and contractivity. These results are obtained by proving a first variation formula for the Wasserstein distance.

Keywords:Alexandrov spaces, Wasserstein spaces, first variation formula, gradient flow
Categories:53C23, 28A35, 49Q20, 58A35

© Canadian Mathematical Society, 2016 : https://cms.math.ca/