Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword fundamental group

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Kitabeppu, Yu; Lakzian, Sajjad
Non-branching RCD$(0,N)$ Geodesic Spaces with Small Linear Diameter Growth have Finitely Generated Fundamental Groups
In this paper, we generalize the finite generation result of Sormani to non-branching $RCD(0,N)$ geodesic spaces (and in particular, Alexandrov spaces) with full support measures. This is a special case of the Milnor's Conjecture for complete non-compact $RCD(0,N)$ spaces. One of the key tools we use is the Abresch-Gromoll type excess estimates for non-smooth spaces obtained by Gigli-Mosconi.

Keywords:Milnor conjecture, non negative Ricci curvature, curvature dimension condition, finitely generated, fundamental group, infinitesimally Hilbertian
Categories:53C23, 30L99

2. CMB 2013 (vol 57 pp. 439)

Yang, YanHong
The Fixed Point Locus of the Verschiebung on $\mathcal{M}_X(2, 0)$ for Genus-2 Curves $X$ in Charateristic $2$
We prove that for every ordinary genus-$2$ curve $X$ over a finite field $\kappa$ of characteristic $2$ with $\textrm{Aut}(X/\kappa)=\mathbb{Z}/2\mathbb{Z} \times S_3$, there exist $\textrm{SL}(2,\kappa[\![s]\!])$-representations of $\pi_1(X)$ such that the image of $\pi_1(\overline{X})$ is infinite. This result produces a family of examples similar to Laszlo's counterexample to de Jong's question regarding the finiteness of the geometric monodromy of representations of the fundamental group.

Keywords:vector bundle, Frobenius pullback, representation, etale fundamental group
Categories:14H60, 14D05, 14G15

3. CMB 2003 (vol 46 pp. 122)

Moon, Myoungho
On Certain Finitely Generated Subgroups of Groups Which Split
Define a group $G$ to be in the class $\mathcal{S}$ if for any finitely generated subgroup $K$ of $G$ having the property that there is a positive integer $n$ such that $g^n \in K$ for all $g\in G$, $K$ has finite index in $G$. We show that a free product with amalgamation $A*_C B$ and an $\HNN$ group $A *_C$ belong to $\mathcal{S}$, if $C$ is in $\mathcal{S}$ and every subgroup of $C$ is finitely generated.

Keywords:free product with amalgamation, $\HNN$ group, graph of groups, fundamental group
Categories:20E06, 20E08, 57M07

© Canadian Mathematical Society, 2015 :