CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword fractional integral

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Gurbuz, Ferit
Some estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces
In this paper, we establish $BMO$ estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces, respectively.

Keywords:fractional integral operator, fractional maximal operator, rough kernel, generalized commutator, $A(p,q)$ weight, generalized weighted Morrey space
Categories:42B20, 42B25

2. CMB 2010 (vol 54 pp. 207)

Chen, Jiecheng; Fan, Dashan
A Bilinear Fractional Integral on Compact Lie Groups
As an analog of a well-known theorem on the bilinear fractional integral on $\mathbb{R}^{n}$ by Kenig and Stein, we establish the similar boundedness property for a bilinear fractional integral on a compact Lie group. Our result is also a generalization of our recent theorem about the bilinear fractional integral on torus.

Keywords:bilinear fractional integral, $L^p$ spaces, Heat kernel
Categories:43A22, 43A32, 43B25

3. CMB 2009 (vol 53 pp. 263)

Feuto, Justin; Fofana, Ibrahim; Koua, Konin
Weighted Norm Inequalities for a Maximal Operator in Some Subspace of Amalgams
We give weighted norm inequalities for the maximal fractional operator $ \mathcal M_{q,\beta }$ of Hardy–Littlewood and the fractional integral $I_{\gamma}$. These inequalities are established between $(L^{q},L^{p}) ^{\alpha }(X,d,\mu )$ spaces (which are superspaces of Lebesgue spaces $L^{\alpha}(X,d,\mu)$ and subspaces of amalgams $(L^{q},L^{p})(X,d,\mu)$) and in the setting of space of homogeneous type $(X,d,\mu)$. The conditions on the weights are stated in terms of Orlicz norm.

Keywords:fractional maximal operator, fractional integral, space of homogeneous type
Categories:42B35, 42B20, 42B25

© Canadian Mathematical Society, 2016 : https://cms.math.ca/