Expand all Collapse all | Results 1 - 15 of 15 |
1. CMB 2014 (vol 57 pp. 648)
On the ${\mathcal F}{\Phi}$-Hypercentre of Finite Groups Let $G$ be a finite group, $\mathcal F$ a class of groups.
Then $Z_{{\mathcal F}{\Phi}}(G)$ is the ${\mathcal F}{\Phi}$-hypercentre
of $G$ which is the product of all normal subgroups of $G$ whose
non-Frattini $G$-chief factors are $\mathcal F$-central in $G$. A
subgroup $H$ is called $\mathcal M$-supplemented in a finite group
$G$, if there exists a subgroup $B$ of $G$ such that $G=HB$ and
$H_1B$ is a proper subgroup of $G$ for any maximal subgroup $H_1$
of $H$. The main purpose of this paper is to prove: Let $E$ be a
normal subgroup of a group $G$. Suppose that every noncyclic
Sylow
subgroup $P$ of $F^{*}(E)$ has a subgroup $D$ such that
$1\lt |D|\lt |P|$ and every subgroup $H$ of $P$ with order $|H|=|D|$
is
$\mathcal M$-supplemented in $G$, then $E\leq Z_{{\mathcal
U}{\Phi}}(G)$.
Keywords:${\mathcal F}{\Phi}$-hypercentre, Sylow subgroups, $\mathcal M$-supplemented subgroups, formation Categories:20D10, 20D20 |
2. CMB Online first
Property T and Amenable Transformation Group $C^*$-algebras It is well known that a discrete group which is both amenable and
has Kazhdan's Property T must be finite. In this note we generalize
the above statement to the case of transformation groups. We show
that if $G$ is a discrete amenable group acting on a compact
Hausdorff space $X$, then the transformation group $C^*$-algebra
$C^*(X, G)$ has Property T if and only if both $X$ and $G$ are finite. Our
approach does not rely on the use of tracial states on $C^*(X, G)$.
Keywords:Property T, $C^*$-algebras, transformation group, amenable Categories:46L55, 46L05 |
3. CMB 2011 (vol 56 pp. 395)
Coessential Abelianization Morphisms in the Category of Groups An epimorphism $\phi\colon G\to H$ of groups, where $G$ has rank $n$, is called
coessential if every (ordered) generating $n$-tuple of $H$ can be
lifted along $\phi$ to a generating $n$-tuple for $G$. We discuss this
property in the context of the category of groups, and establish a criterion
for such a group $G$ to have the property that its abelianization
epimorphism $G\to G/[G,G]$, where $[G,G]$ is the commutator subgroup, is
coessential. We give an example of a family of 2-generator groups whose
abelianization epimorphism is not coessential.
This family also provides counterexamples to the generalized Andrews--Curtis conjecture.
Keywords:coessential epimorphism, Nielsen transformations, Andrew-Curtis transformations Categories:20F05, 20F99, 20J15 |
4. CMB 2011 (vol 56 pp. 366)
Multiple Solutions for Nonlinear Periodic Problems We consider a nonlinear periodic problem driven by a
nonlinear nonhomogeneous differential operator and a
CarathÃ©odory reaction term $f(t,x)$ that exhibits a
$(p-1)$-superlinear growth in $x \in \mathbb{R}$
near $\pm\infty$ and near zero.
A special case of the differential operator is the scalar
$p$-Laplacian. Using a combination of variational methods based on
the critical point theory with Morse theory (critical groups), we
show that the problem has three nontrivial solutions, two of which
have constant sign (one positive, the other negative).
Keywords:$C$-condition, mountain pass theorem, critical groups, strong deformation retract, contractible space, homotopy invariance Categories:34B15, 34B18, 34C25, 58E05 |
5. CMB 2011 (vol 55 pp. 571)
A Generalised Kummer-Type Transformation for the ${}_pF_p(x)$ Hypergeometric Function In a recent paper, Miller derived a Kummer-type
transformation for the generalised hypergeometric function ${}_pF_p(x)$ when pairs of
parameters differ by unity, by means of a reduction
formula for a certain KampÃ© de FÃ©riet function. An alternative and simpler derivation of this
transformation is obtained here by application of the well-known Kummer transformation for the
confluent hypergeometric function corresponding to $p=1$.
Keywords:generalised hypergeometric series, Kummer transformation Categories:33C15, 33C20 |
6. CMB 2011 (vol 55 pp. 297)
The Group $\operatorname{Aut}(\mu)$ is Roelcke Precompact Following a similar result of Uspenskij on the unitary group of a
separable Hilbert space, we show that, with respect to the lower (or
Roelcke) uniform structure, the Polish group $G=
\operatorname{Aut}(\mu)$ of automorphisms of an atomless standard
Borel probability space $(X,\mu)$ is precompact. We identify the
corresponding compactification as the space of Markov operators on
$L_2(\mu)$ and deduce that the algebra of right and left uniformly
continuous functions, the algebra of weakly almost periodic functions,
and the algebra of Hilbert functions on $G$, i.e., functions on
$G$ arising from unitary representations, all coincide. Again
following Uspenskij, we also conclude that $G$ is totally minimal.
Keywords:Roelcke precompact, unitary group, measure preserving transformations, Markov operators, weakly almost periodic functions Categories:54H11, 22A05, 37B05, 54H20 |
7. CMB 2007 (vol 50 pp. 632)
Transformations and Colorings of Groups Let $G$ be a compact topological group and let $f\colon G\to G$ be a
continuous transformation of $G$. Define $f^*\colon G\to G$ by
$f^*(x)=f(x^{-1})x$ and let $\mu=\mu_G$ be Haar measure on $G$. Assume
that $H=\Imag f^*$ is a subgroup of $G$ and for every
measurable $C\subseteq H$,
$\mu_G((f^*)^{-1}(C))=\mu_H(C)$. Then for every measurable
$C\subseteq G$, there exist $S\subseteq C$ and $g\in G$ such that
$f(Sg^{-1})\subseteq Cg^{-1}$ and $\mu(S)\ge(\mu(C))^2$.
Keywords:compact topological group, continuous transformation, endomorphism, Ramsey theoryinversion, Categories:05D10, 20D60, 22A10 |
8. CMB 2006 (vol 49 pp. 265)
Endomorphisms That Are the Sum of a Unit and a Root of a Fixed Polynomial If $C=C(R)$ denotes the center of a ring $R$ and $g(x)$ is a polynomial in
C[x]$, Camillo and Sim\'{o}n called a ring $g(x)$-clean if every element is
the sum of a unit and a root of $g(x)$. If $V$ is a vector space of
countable dimension over a division ring $D,$ they showed that
$\end {}_{D}V$ is
$g(x)$-clean provided that $g(x)$ has two roots in $C(D)$. If $g(x)=x-x^{2}$
this shows that $\end {}_{D}V$ is clean, a result of Nicholson and Varadarajan.
In this paper we remove the countable condition, and in fact prove that
$\Mend {}_{R}M$ is $g(x)$-clean for any semisimple module $M$ over an arbitrary
ring $R$ provided that $g(x)\in (x-a)(x-b)C[x]$ where $a,b\in C$ and both $b$
and $b-a$ are units in $R$.
Keywords:Clean rings, linear transformations, endomorphism rings Categories:16S50, 16E50 |
9. CMB 2005 (vol 48 pp. 267)
Continuous Adjacency Preserving Maps on Real Matrices It is proved that every adjacency preserving continuous map
on the vector space of real matrices of fixed size, is either a
bijective affine tranformation
of the form $ A \mapsto PAQ+R$, possibly followed by the transposition if
the matrices are of square size, or its range is contained
in a linear subspace consisting of matrices of rank at most one
translated by some matrix $R$. The result
extends previously known
theorems where the map was assumed to be also injective.
Keywords:adjacency of matrices, continuous preservers, affine transformations Categories:15A03, 15A04. |
10. CMB 2004 (vol 47 pp. 624)
A Compactness Theorem for Yang-Mills Connections In this paper, we consider Yang-Mills connections
on a vector bundle $E$ over a compact Riemannian manifold $M$ of
dimension $m> 4$, and we show that any set of Yang-Mills
connections with the uniformly bounded $L^{\frac{m}{2}}$-norm of
curvature is compact in $C^{\infty}$ topology.
Keywords:Yang-Mills connection, vector bundle, gauge transformation Categories:58E20, 53C21 |
11. CMB 2004 (vol 47 pp. 298)
Near Triangularizability Implies Triangularizability In this paper we consider collections of
compact operators on a real or
complex Banach space including linear operators
on finite-dimensional vector spaces. We show
that such a collection is simultaneously
triangularizable if and only if it is arbitrarily
close to a simultaneously triangularizable
collection of compact operators. As an application
of these results we obtain an invariant subspace
theorem for certain bounded operators. We
further prove that in finite dimensions near
reducibility implies reducibility whenever
the ground field is $\BR$ or $\BC$.
Keywords:Linear transformation, Compact operator,, Triangularizability, Banach space, Hilbert, space Categories:47A15, 47D03, 20M20 |
12. CMB 2004 (vol 47 pp. 133)
Embeddability of Some Three-Dimensional Weakly Pseudoconvex ${\rm CR}$ Structures We prove that a class of perturbations of standard ${\rm CR}$
structure on the boundary of three-dimensional complex ellipsoid
$E_{p,q}$ can be realized as hypersurfaces on $\mathbb{C}^2$, which
generalizes the result of Burns and Epstein on the embeddability of
some perturbations of standard ${\rm CR}$ structure on $S^3$.
Keywords:deformations, embeddability, complex ellipsoids Categories:32V30, 32G07, 32V35 |
13. CMB 2001 (vol 44 pp. 337)
Spectral Transformations of the Laurent Biorthogonal Polynomials, II. Pastro Polynomials We continue to study the simplest closure conditions for chains of
spectral transformations of the Laurent biorthogonal polynomials
($\LBP$). It is shown that the 1-1-periodic $q$-closure condition
leads to the $\LBP$ introduced by Pastro. We introduce classes of
semi-classical and Laguerre-Hahn $\LBP$ associated to generic closure
conditions of the chain of spectral transformations.
Keywords:Laurent orthogonal polynomials, Pastro polynomials, spectral transformations Category:33D45 |
14. CMB 2000 (vol 43 pp. 427)
Helices, Hasimoto Surfaces and BÃ¤cklund Transformations Travelling wave solutions to the vortex filament flow generated by
elastica produce surfaces in $\R^3$ that carry mutually orthogonal
foliations by geodesics and by helices. These surfaces are classified
in the special cases where the helices are all congruent or are all
generated by a single screw motion. The first case yields a new
characterization for the B\"acklund transformation for constant
torsion curves in $\R^3$, previously derived from the well-known
transformation for pseudospherical surfaces. A similar investigation
for surfaces in $H^3$ or $S^3$ leads to a new transformation for
constant torsion curves in those spaces that is also derived from
pseudospherical surfaces.
Keywords:surfaces, filament flow, BÃ¤cklund transformations Categories:53A05, 58F37, 52C42, 58A15 |
15. CMB 1999 (vol 42 pp. 274)
The Bockstein Map is Necessary We construct two non-isomorphic nuclear, stably finite,
real rank zero $C^\ast$-algebras $E$ and $E'$ for which
there is an isomorphism of ordered groups
$\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to
\bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible
with all the coefficient transformations. The $C^\ast$-algebras
$E$ and $E'$ are not isomorphic since there is no $\Theta$
as above which is also compatible with the Bockstein operations.
By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair
of non-isomorphic, real rank zero, purely infinite $C^\ast$-algebras
with similar properties.
Keywords:$K$-theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$-algebras, real rank zero, purely infinite, classification Categories:46L35, 46L80, 19K14 |