CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword flat dimension

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2016 (vol 59 pp. 403)

Zargar, Majid Rahro; Zakeri, Hossein
On Flat and Gorenstein Flat Dimensions of Local Cohomology Modules
Let $\mathfrak{a}$ be an ideal of a Noetherian local ring $R$ and let $C$ be a semidualizing $R$-module. For an $R$-module $X$, we denote any of the quantities $\mathfrak{d}_R X$, $\operatorname{\mathsf{Gfd}}_R X$ and $\operatorname{\mathsf{G_C-fd}}_RX$ by $\operatorname{\mathsf{T}}(X)$. Let $M$ be an $R$-module such that $\operatorname{H}_{\mathfrak{a}}^i(M)=0$ for all $i\neq n$. It is proved that if $\operatorname{\mathsf{T}}(X)\lt \infty$, then $\operatorname{\mathsf{T}}(\operatorname{H}_{\mathfrak{a}}^n(M))\leq\operatorname{\mathsf{T}}(M)+n$ and the equality holds whenever $M$ is finitely generated. With the aid of these results, among other things, we characterize Cohen-Macaulay modules, dualizing modules and Gorenstein rings.

Keywords:flat dimension, Gorenstein injective dimension, Gorenstein flat dimension, local cohomology, relative Cohen-Macaulay module, semidualizing module
Categories:13D05, 13D45, 18G20

2. CMB 2015 (vol 58 pp. 664)

Vahidi, Alireza
Betti Numbers and Flat Dimensions of Local Cohomology Modules
Assume that $R$ is a commutative Noetherian ring with non-zero identity, $\mathfrak{a}$ is an ideal of $R$ and $X$ is an $R$--module. In this paper, we first study the finiteness of Betti numbers of local cohomology modules $\operatorname{H}_\mathfrak{a}^i(X)$. Then we give some inequalities between the Betti numbers of $X$ and those of its local cohomology modules. Finally, we present many upper bounds for the flat dimension of $X$ in terms of the flat dimensions of its local cohomology modules and an upper bound for the flat dimension of $\operatorname{H}_\mathfrak{a}^i(X)$ in terms of the flat dimensions of the modules $\operatorname{H}_\mathfrak{a}^j(X)$, $j\not= i$, and that of $X$.

Keywords:Betti numbers, flat dimensions, local cohomology modules
Categories:13D45, 13D05

3. CMB 2012 (vol 56 pp. 491)

Bahmanpour, Kamal
A Note on Homological Dimensions of Artinian Local Cohomology Modules
Let $(R,{\frak m})$ be a non-zero commutative Noetherian local ring (with identity), $M$ be a non-zero finitely generated $R$-module. In this paper for any ${\frak p}\in {\rm Spec}(R)$ we show that $ \operatorname{{\rm injdim_{_{R_{\frak p}}}}} H^{i-\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ and ${\rm fd}_{R_{\p}} H^{i-\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ are bounded from above by $ \operatorname{{\rm injdim_{_{R}}}} H^i_{\frak m}(M)$ and $ {\rm fd}_R H^i_{\frak m}(M)$ respectively, for all integers $i\geq \dim(R/{\frak p})$.

Keywords:cofinite modules, flat dimension, injective dimension, Krull dimension, local cohomology
Category:13D45

© Canadian Mathematical Society, 2016 : https://cms.math.ca/