1. CMB 2014 (vol 58 pp. 80)
 Harada, Megumi; Horiguchi, Tatsuya; Masuda, Mikiya

The Equivariant Cohomology Rings of Peterson Varieties in All Lie
Types
Let $G$ be a complex semisimple linear algebraic group and let
$Pet$ be the associated Peterson variety in the flag
variety $G/B$.
The main theorem of this note gives an efficient presentation
of the equivariant cohomology ring $H^*_S(Pet)$ of the
Peterson variety as a quotient of a polynomial ring by an ideal
$J$ generated by quadratic polynomials, in the spirit of the
Borel presentation of the cohomology of the flag variety. Here
the group $S \cong \mathbb{C}^*$ is a certain subgroup of a maximal
torus $T$ of $G$.
Our description of the ideal $J$ uses the Cartan matrix and is
uniform across Lie types. In our arguments we use the Monk formula
and Giambelli formula for the equivariant cohomology rings of
Peterson varieties for all Lie types, as obtained in the work
of Drellich. Our result generalizes a previous theorem of FukukawaHaradaMasuda,
which was only for Lie type $A$.
Keywords:equivariant cohomology, Peterson varieties, flag varieties, Monk formula, Giambelli formula Categories:55N91, 14N15 

2. CMB 2011 (vol 55 pp. 870)
 Wang, Hui; Deng, Shaoqiang

Left Invariant EinsteinRanders Metrics on Compact Lie Groups
In this paper we study left invariant EinsteinRanders metrics on compact Lie
groups. First, we give a method to construct left invariant nonRiemannian EinsteinRanders metrics
on a compact Lie group, using the Zermelo navigation data.
Then we prove that this gives a complete classification of left invariant EinsteinRanders metrics on compact simple
Lie groups with the underlying Riemannian metric naturally reductive.
Further, we completely determine the identity component of the group of
isometries for this type of metrics on simple groups. Finally, we study some
geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature
of such metrics.
Keywords:EinsteinRanders metric, compact Lie groups, geodesic, flag curvature Categories:17B20, 22E46, 53C12 

3. CMB 2011 (vol 55 pp. 474)
 Chen, Bin; Zhao, Lili

A Note on Randers Metrics of Scalar Flag Curvature
Some families of Randers metrics of scalar flag curvature are
studied in this paper. Explicit examples that are neither locally
projectively flat nor of isotropic $S$curvature are given. Certain
Randers metrics with Einstein $\alpha$ are considered and proved to
be complex. Three dimensional Randers manifolds, with $\alpha$
having constant scalar curvature, are studied.
Keywords:Randers metrics, scalar flag curvature Categories:53B40, 53C60 

4. CMB 2009 (vol 53 pp. 122)
 Mo, Xiaohuan; Zhou, Linfeng

A Class of Finsler Metrics with Bounded Cartan Torsion
In this paper, we find a class of $(\alpha,\beta)$ metrics which have a bounded Cartan torsion. This class contains all Randers metrics. Furthermore, we give some applications and obtain two corollaries about curvature of this metrics.
Keywords:Finsler manifold, $(\alpha,\beta)$ metric, Cartan torsion, Rquadratic, flag curvature Category:58E20 
