Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword finite fields

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

Hanson, Brandon
Character sums over Bohr sets
We prove character sum estimates for additive Bohr subsets modulo a prime. These estimates are analogous to classical character sum bounds of Pólya-Vinogradov and Burgess. These estimates are applied to obtain results on recurrence mod $p$ by special elements.

Keywords:character sums, Bohr sets, finite fields
Categories:11L40, 11T24, 11T23

2. CMB Online first

Achter, Jeffrey; Williams, Cassandra
Local Heuristics and an Exact Formula for Abelian Surfaces Over Finite Fields
Consider a quartic $q$-Weil polynomial $f$. Motivated by equidistribution considerations, we define, for each prime $\ell$, a local factor that measures the relative frequency with which $f\bmod \ell$ occurs as the characteristic polynomial of a symplectic similitude over $\mathbb{F}_\ell$. For a certain class of polynomials, we show that the resulting infinite product calculates the number of principally polarized abelian surfaces over $\mathbb{F}_q$ with Weil polynomial $f$.

Keywords:abelian surfaces, finite fields, random matrices

3. CMB 2014 (vol 57 pp. 834)

Koh, Doowon
Restriction Operators Acting on Radial Functions on Vector Spaces Over Finite Fields
We study $L^p-L^r$ restriction estimates for algebraic varieties $V$ in the case when restriction operators act on radial functions in the finite field setting. We show that if the varieties $V$ lie in odd dimensional vector spaces over finite fields, then the conjectured restriction estimates are possible for all radial test functions. In addition, assuming that the varieties $V$ are defined in even dimensional spaces and have few intersection points with the sphere of zero radius, we also obtain the conjectured exponents for all radial test functions.

Keywords:finite fields, radial functions, restriction operators
Categories:42B05, 43A32, 43A15

4. CMB 2011 (vol 56 pp. 258)

Chandoul, A.; Jellali, M.; Mkaouar, M.
The Smallest Pisot Element in the Field of Formal Power Series Over a Finite Field
Dufresnoy and Pisot characterized the smallest Pisot number of degree $n \geq 3$ by giving explicitly its minimal polynomial. In this paper, we translate Dufresnoy and Pisot's result to the Laurent series case. The aim of this paper is to prove that the minimal polynomial of the smallest Pisot element (SPE) of degree $n$ in the field of formal power series over a finite field is given by $P(Y)=Y^{n}-\alpha XY^{n-1}-\alpha^n,$ where $\alpha$ is the least element of the finite field $\mathbb{F}_{q}\backslash\{0\}$ (as a finite total ordered set). We prove that the sequence of SPEs of degree $n$ is decreasing and converges to $\alpha X.$ Finally, we show how to obtain explicit continued fraction expansion of the smallest Pisot element over a finite field.

Keywords:Pisot element, continued fraction, Laurent series, finite fields
Categories:11A55, 11D45, 11D72, 11J61, 11J66

5. CMB 2011 (vol 56 pp. 500)

Browning, T. D.
The Lang--Weil Estimate for Cubic Hypersurfaces
An improved estimate is provided for the number of $\mathbb{F}_q$-rational points on a geometrically irreducible, projective, cubic hypersurface that is not equal to a cone.

Keywords:cubic hypersurface, rational points, finite fields
Categories:11G25, 14G15

© Canadian Mathematical Society, 2015 :