Expand all Collapse all | Results 1 - 3 of 3 |
1. CMB Online first
On the Graph of Divisibility of an Integral Domain It is well known that the factorization properties of a domain are reflected
in the structure of its group of divisibility. The main theme of this paper
is to introduce a topological/graph-theoretic point of view to the current
understanding of factorization in integral domains. We also show that
connectedness properties in the graph and topological space give rise to a
generalization of atomicity.
Keywords:atomic, factorization, divisibility Categories:13F15, 13A05 |
2. CMB 2011 (vol 54 pp. 255)
On an Identity due to Bump and Diaconis, and Tracy and Widom
A classical question for a Toeplitz matrix with given symbol is how to
compute asymptotics for the determinants of its reductions to finite
rank. One can also consider how those asymptotics are affected when
shifting an initial set of rows and columns (or, equivalently,
asymptotics of their minors). Bump and Diaconis
obtained a formula for such shifts involving Laguerre polynomials and
sums over symmetric groups. They also showed how the Heine identity
extends for such minors, which makes this question relevant to Random
Matrix Theory. Independently, Tracy and Widom
used the Wiener-Hopf factorization to
express those shifts in terms of products of infinite matrices. We
show directly why those two expressions are equal and uncover some
structure in both formulas that was unknown to their authors. We
introduce a mysterious differential operator on symmetric functions
that is very similar to vertex operators. We show that the
Bump-Diaconis-Tracy-Widom identity is a differentiated version of the
classical Jacobi-Trudi identity.
Keywords:Toeplitz matrices, Jacobi-Trudi identity, SzegÅ limit theorem, Heine identity, Wiener-Hopf factorization Categories:47B35, 05E05, 20G05 |
3. CMB 2010 (vol 54 pp. 39)
Elements in a Numerical Semigroup with Factorizations of the Same Length
Questions concerning the lengths of factorizations into irreducible
elements in numerical monoids
have gained much attention in the recent literature. In this note,
we show that a numerical monoid has an element with two different
irreducible factorizations of the same length if and only if its
embedding dimension is greater than
two. We find formulas in embedding dimension three for the smallest
element with two different irreducible factorizations of the same
length and the largest element whose different irreducible
factorizations all have distinct lengths. We show that these
formulas do not naturally extend to higher embedding
dimensions.
Keywords:numerical monoid, numerical semigroup, non-unique factorization Categories:20M14, 20D60, 11B75 |