76. CMB 2015 (vol 58 pp. 704)
 Benamar, H.; Chandoul, A.; Mkaouar, M.

On the Continued Fraction Expansion of Fixed Period in Finite Fields
The Chowla conjecture
states that,
if $t$ is any given
positive integer, there are infinitely many prime positive
integers $N$ such that $\operatorname{Per} (\sqrt{N})=t$, where
$\operatorname{Per} (\sqrt{N})$
is the period length of the continued fraction expansion for
$\sqrt{N}$.
C. Friesen proved
that, for any $k\in \mathbb{N}$, there are infinitely many
squarefree integers $N$, where the continued fraction expansion
of $\sqrt{N}$ has a fixed period. In this paper, we describe all
polynomials $Q\in \mathbb{F}_q[X] $ for which the continued fraction
expansion of $\sqrt {Q}$ has a fixed period, also we give a
lower
bound of the number of monic, nonsquares polynomials $Q$ such
that $\deg Q= 2d$ and $ Per \sqrt {Q}=t$.
Keywords:continued fractions, polynomials, formal power series Categories:11A55, 13J05 

77. CMB 2015 (vol 58 pp. 799)
 Kong, Qingjun; Guo, Xiuyun

On $s$semipermutable or $s$quasinormally Embedded Subgroups of Finite Groups
Suppose that $G$ is a
finite group and $H$ is a subgroup of $G$. $H$ is said to be
$s$semipermutable in $G$ if $HG_{p}=G_{p}H$ for any Sylow
$p$subgroup $G_{p}$ of $G$ with $(p,H)=1$; $H$ is said to be
$s$quasinormally embedded in $G$ if for each prime $p$ dividing the
order of $H$, a Sylow $p$subgroup of $H$ is also a Sylow
$p$subgroup of some $s$quasinormal subgroup of $G$. We fix in
every noncyclic Sylow subgroup $P$ of $G$ some subgroup $D$
satisfying $1\lt D\lt P$ and study the structure of $G$ under the
assumption that every subgroup $H$ of $P$ with $H=D$ is either
$s$semipermutable or $s$quasinormally embedded in $G$.
Some recent results are generalized and unified.
Keywords:$s$semipermutable subgroup, $s$quasinormally embedded subgroup, saturated formation. Categories:20D10, 20D20 

78. CMB 2015 (vol 58 pp. 741)
 Gao, Zenghui

Homological Properties Relative to Injectively Resolving Subcategories
Let $\mathcal{E}$ be an injectively resolving subcategory of
left $R$modules. A left $R$module $M$
(resp. right $R$module $N$) is called $\mathcal{E}$injective
(resp. $\mathcal{E}$flat)
if $\operatorname{Ext}_R^1(G,M)=0$ (resp. $\operatorname{Tor}_1^R(N,G)=0$)
for any $G\in\mathcal{E}$.
Let $\mathcal{E}$ be a covering subcategory.
We prove that a left $R$module $M$ is $\mathcal{E}$injective
if and only if $M$ is a direct sum
of an injective left $R$module and a reduced $\mathcal{E}$injective
left $R$module.
Suppose $\mathcal{F}$ is a preenveloping subcategory of right
$R$modules such that
$\mathcal{E}^+\subseteq\mathcal{F}$ and $\mathcal{F}^+\subseteq\mathcal{E}$.
It is shown that a finitely presented right $R$module $M$ is
$\mathcal{E}$flat if and only if
$M$ is a cokernel of an $\mathcal{F}$preenvelope of a right
$R$module.
In addition, we introduce and investigate the
$\mathcal{E}$injective and $\mathcal{E}$flat dimensions of
modules and rings. We also introduce $\mathcal{E}$(semi)hereditary
rings and $\mathcal{E}$von Neumann regular rings and characterize
them in terms of $\mathcal{E}$injective and $\mathcal{E}$flat
modules.
Keywords:injectively resolving subcategory, \mathcal{E}injective module (dimension), \mathcal{E}flat module (dimension), cover, preenvelope, \mathcal{E}(semi)hereditary ring Categories:16E30, 16E10, 16E60 

79. CMB 2015 (vol 59 pp. 104)
 He, Ziyi; Yang, Dachun; Yuan, Wen

LittlewoodPaley Characterizations of SecondOrder Sobolev Spaces via Averages on Balls
In this paper, the authors characterize secondorder Sobolev
spaces $W^{2,p}({\mathbb R}^n)$,
with $p\in [2,\infty)$ and $n\in\mathbb N$ or $p\in (1,2)$ and
$n\in\{1,2,3\}$, via the Lusin area
function and the LittlewoodPaley $g_\lambda^\ast$function in
terms of ball means.
Keywords:Sobolev space, ball means, Lusinarea function, $g_\lambda^*$function Categories:46E35, 42B25, 42B20, 42B35 

80. CMB 2015 (vol 58 pp. 824)
 Luo, XiuHua

Exact Morphism Category and Gorensteinprojective Representations
Let $Q$ be a finite acyclic quiver, $J$ be an ideal of $kQ$ generated
by all arrows in $Q$, $A$ be a finitedimensional $k$algebra. The
category of all finitedimensional representations of $(Q, J^2)$ over
$A$ is denoted by $\operatorname{rep}(Q, J^2, A)$. In this paper, we
introduce the category $\operatorname{exa}(Q,J^2,A)$, which is a
subcategory of
$\operatorname{rep}{}(Q,J^2,A)$ of all exact representations.
The main result of this paper explicitly describes the Gorensteinprojective representations in $\operatorname{rep}{}(Q,J^2,A)$,
via the exact representations plus an extra condition.
As a corollary, $A$ is a selfinjective algebra, if
and only if the Gorensteinprojective representations are exactly the
exact representations of $(Q, J^2)$ over $A$.
Keywords:representations of a quiver over an algebra, exact representations, Gorensteinprojective modules Category:18G25 

81. CMB 2015 (vol 58 pp. 673)
 Achter, Jeffrey; Williams, Cassandra

Local Heuristics and an Exact Formula for Abelian Surfaces Over Finite Fields
Consider a quartic $q$Weil polynomial $f$. Motivated by equidistribution
considerations, we define, for each prime $\ell$, a local factor
that
measures the relative frequency with which $f\bmod \ell$ occurs
as the
characteristic polynomial of a symplectic similitude over $\mathbb{F}_\ell$.
For a certain
class of polynomials, we show that the resulting infinite product
calculates the number of principally polarized abelian surfaces
over $\mathbb{F}_q$
with Weil polynomial $f$.
Keywords:abelian surfaces, finite fields, random matrices Category:14K02 

82. CMB 2015 (vol 58 pp. 774)
 Hanson, Brandon

Character Sums over Bohr Sets
We prove character sum estimates for additive Bohr subsets modulo
a prime.
These estimates are analogous to classical character sum bounds
of
PÃ³lyaVinogradov and Burgess. These estimates are applied to
obtain results on
recurrence mod $p$ by special elements.
Keywords:character sums, Bohr sets, finite fields Categories:11L40, 11T24, 11T23 

83. CMB 2015 (vol 58 pp. 877)
 Zaatra, Mohamed

Generating Some Symmetric Semiclassical Orthogonal Polynomials
We show that if $v$ is a regular semiclassical form
(linear functional), then the symmetric form $u$ defined by the
relation
$x^{2}\sigma u = \lambda v$,
where $(\sigma f)(x)=f(x^{2})$ and the odd
moments of $u$ are $0$, is also
regular and semiclassical form for every
complex $\lambda $ except for a discrete set of numbers depending
on $v$. We give explicitly the threeterm recurrence relation
and the
structure relation coefficients of the orthogonal polynomials
sequence associated with $u$ and the class of the form $u$ knowing
that of $v$. We conclude with an illustrative example.
Keywords:orthogonal polynomials, quadratic decomposition, semiclassical forms, structure relation Categories:33C45, 42C05 

84. CMB 2015 (vol 59 pp. 211)
 Totik, Vilmos

Universality Under SzegÅ's Condition
This paper presents a
theorem on universality on orthogonal polynomials/random matrices
under a weak local condition on the weight function $w$.
With a new inequality for
polynomials and with the use of fast decreasing polynomials,
it is shown that an approach of
D. S. Lubinsky is applicable. The proof works
at all points which are Lebesguepoints both
for the weight function $w$ and for $\log w$.
Keywords:universality, random matrices, Christoffel functions, asymptotics, potential theory Categories:42C05, 60B20, 30C85, 31A15 

85. CMB 2015 (vol 59 pp. 144)
 Laterveer, Robert

A Brief Note Concerning Hard Lefschetz for Chow Groups
We formulate a conjectural hard Lefschetz property
for Chow groups, and prove this in some special cases: roughly
speaking, for varieties with finitedimensional motive, and
for varieties whose selfproduct has vanishing middledimensional
Griffiths group. An appendix includes related statements that
follow from results of Vial.
Keywords:algebraic cycles, Chow groups, finitedimensional motives Categories:14C15, 14C25, 14C30 

86. CMB 2015 (vol 58 pp. 835)
87. CMB 2015 (vol 58 pp. 787)
 Kitabeppu, Yu; Lakzian, Sajjad

Nonbranching RCD$(0,N)$ Geodesic Spaces with Small Linear Diameter Growth have Finitely Generated Fundamental Groups
In this paper, we generalize the finite generation result of
Sormani
to nonbranching $RCD(0,N)$
geodesic spaces (and in particular, Alexandrov spaces) with full
support measures. This is a special case of the Milnor's Conjecture
for complete noncompact $RCD(0,N)$ spaces. One of the key tools
we use is the AbreschGromoll type excess estimates for nonsmooth
spaces obtained by GigliMosconi.
Keywords:Milnor conjecture, non negative Ricci curvature, curvature dimension condition, finitely generated, fundamental group, infinitesimally Hilbertian Categories:53C23, 30L99 

88. CMB 2015 (vol 58 pp. 858)
 Williams, Kenneth S.

Ternary Quadratic Forms and Eta Quotients
Let $\eta(z)$ $(z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0)$
denote the Dedekind eta function. We use a recent producttosum
formula in conjunction with conditions for the nonrepresentability
of integers by certain ternary quadratic forms to give explicitly
10 eta quotients
\[
f(z):=\eta^{a(m_1)}(m_1 z)\cdots \eta^{{a(m_r)}}(m_r z)=\sum_{n=1}^{\infty}c(n)e^{2\pi
i nz},\quad z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0,
\]
such that the Fourier coefficients $c(n)$ vanish for all positive
integers $n$ in each of infinitely many nonoverlapping arithmetic
progressions. For example, it is shown that for $f(z)=\eta^4(z)\eta^{9}(4z)\eta^{2}(8z)$
we have $c(n)=0$ for all $n$ in each of the arithmetic progressions
$\{16k+14\}_{k \geq 0}$, $\{64k+56\}_{k \geq 0}$, $\{256k+224\}_{k
\geq 0}$, $\{1024k+896\}_{k \geq 0}$, $\ldots$.
Keywords:Dedekind eta function, eta quotient, ternary quadratic forms, vanishing of Fourier coefficients, producttosum formula Categories:11F20, 11E20, 11E25 

89. CMB 2015 (vol 59 pp. 13)
 Aulaskari, Rauno; Chen, Huaihui

On classes $Q_p^\#$ for Hyperbolic Riemann surfaces
The $Q_p$ spaces of holomorphic functions on
the disk, hyperbolic Riemann surfaces or complex unit ball have
been studied deeply.
Meanwhile, there are a lot of papers devoted to the $Q^\#_p$
classes of meromorphic functions on the disk or hyperbolic Riemann
surfaces. In this paper, we prove the nesting property (inclusion
relations) of $Q^\#_p$ classes on hyperbolic Riemann surfaces.
The same property for $Q_p$ spaces was also established systematically
and precisely in
earlier work
by the authors of this paper.
Keywords:$Q_p^\#$ class, hyperbolic Riemann surface, spherical Dirichlet function, Categories:30D50, 30F35 

90. CMB 2015 (vol 59 pp. 119)
91. CMB 2015 (vol 59 pp. 36)
 Donovan, Diane M.; Griggs, Terry S.; McCourt, Thomas A.; Opršal, Jakub; Stanovský, David

Distributive and Antidistributive Mendelsohn Triple Systems
We prove that the existence spectrum of Mendelsohn triple systems
whose associated quasigroups satisfy distributivity corresponds
to the Loeschian numbers, and provide some enumeration results.
We do this by considering a description of the quasigroups in
terms of commutative Moufang loops.
In addition we provide constructions of Mendelsohn quasigroups
that fail distributivity for as many combinations of elements
as possible.
These systems are analogues of Hall triple systems and antimitre
Steiner triple systems respectively.
Keywords:Mendelsohn triple system, quasigroup, distributive, Moufang loop, Loeschian numbers Categories:20N05, 05B07 

92. CMB 2015 (vol 58 pp. 664)
 Vahidi, Alireza

Betti Numbers and Flat Dimensions of Local Cohomology Modules
Assume that $R$ is a commutative Noetherian ring with nonzero
identity, $\mathfrak{a}$ is an ideal of $R$ and $X$ is an $R$module.
In this paper, we first study the finiteness of Betti numbers
of local cohomology modules $\operatorname{H}_\mathfrak{a}^i(X)$. Then we give some
inequalities between the Betti numbers of $X$ and those of its
local cohomology modules. Finally, we present many upper bounds
for the flat dimension of $X$ in terms of the flat dimensions
of its local cohomology modules and an upper bound for the flat
dimension of $\operatorname{H}_\mathfrak{a}^i(X)$ in terms of the flat dimensions of
the modules $\operatorname{H}_\mathfrak{a}^j(X)$, $j\not= i$, and that of $X$.
Keywords:Betti numbers, flat dimensions, local cohomology modules Categories:13D45, 13D05 

93. CMB 2015 (vol 58 pp. 538)
 Li, Lili; Chen, Guiyun

Minimal Non Self Dual Groups
A group $G$ is self dual if every
subgroup
of $G$ is isomorphic to a quotient of $G$ and every quotient
of $G$ is isomorphic to
a subgroup of $G$. It is minimal nonself dual if every
proper subgroup of $G$
is self dual but $G$ is not self dual. In this paper, the structure
of minimal nonself dual groups is determined.
Keywords:minimal nonself dual group, finite group, metacyclic group, metabelian group Category:20D15 

94. CMB 2015 (vol 58 pp. 651)
 Tang, Xianhua

Ground State Solutions of NehariPankov Type for a Superlinear Hamiltonian Elliptic System on ${\mathbb{R}}^{N}$
This paper is concerned with the following
elliptic system of Hamiltonian type
\[
\left\{
\begin{array}{ll}
\triangle u+V(x)u=W_{v}(x, u, v), \ \ \ \ x\in {\mathbb{R}}^{N},
\\
\triangle v+V(x)v=W_{u}(x, u, v), \ \ \ \ x\in {\mathbb{R}}^{N},
\\
u, v\in H^{1}({\mathbb{R}}^{N}),
\end{array}
\right.
\]
where the potential $V$ is periodic and $0$ lies in a gap of
the spectrum of $\Delta+V$, $W(x, s, t)$ is
periodic in $x$ and superlinear in $s$ and $t$ at infinity.
We develop a direct approach to find ground
state solutions of NehariPankov type for the above system.
Especially, our method is applicable for the
case when
\[
W(x, u, v)=\sum_{i=1}^{k}\int_{0}^{\alpha_iu+\beta_iv}g_i(x,
t)t\mathrm{d}t
+\sum_{j=1}^{l}\int_{0}^{\sqrt{u^2+2b_juv+a_jv^2}}h_j(x,
t)t\mathrm{d}t,
\]
where $\alpha_i, \beta_i, a_j, b_j\in \mathbb{R}$ with $\alpha_i^2+\beta_i^2\ne
0$ and $a_j\gt b_j^2$, $g_i(x, t)$
and $h_j(x, t)$ are nondecreasing in $t\in \mathbb{R}^{+}$ for every
$x\in \mathbb{R}^N$ and $g_i(x, 0)=h_j(x, 0)=0$.
Keywords:Hamiltonian elliptic system, superlinear, ground state solutions of NehariPankov type, strongly indefinite functionals Categories:35J50, 35J55 

95. CMB 2015 (vol 58 pp. 449)
 Boynton, Jason Greene; Coykendall, Jim

On the Graph of Divisibility of an Integral Domain
It is well known that the factorization properties of a domain are reflected
in the structure of its group of divisibility. The main theme of this paper
is to introduce a topological/graphtheoretic point of view to the current
understanding of factorization in integral domains. We also show that
connectedness properties in the graph and topological space give rise to a
generalization of atomicity.
Keywords:atomic, factorization, divisibility Categories:13F15, 13A05 

96. CMB 2015 (vol 58 pp. 548)
 Lü, Guangshi; Sankaranarayanan, Ayyadurai

Higher Moments of Fourier Coefficients of Cusp Forms
Let $S_{k}(\Gamma)$ be the space of holomorphic cusp
forms of even integral weight $k$ for the full modular group
$SL(2, \mathbb{Z})$. Let
$\lambda_f(n)$, $\lambda_g(n)$, $\lambda_h(n)$ be the $n$th normalized
Fourier
coefficients of three distinct holomorphic primitive cusp forms
$f(z) \in S_{k_1}(\Gamma), g(z) \in S_{k_2}(\Gamma), h(z) \in
S_{k_3}(\Gamma)$ respectively.
In this paper we study the cancellations of sums related to arithmetic
functions, such as $\lambda_f(n)^4\lambda_g(n)^2$, $\lambda_g(n)^6$,
$\lambda_g(n)^2\lambda_h(n)^4$, and $\lambda_g(n^3)^2$ twisted
by
the arithmetic function $\lambda_f(n)$.
Keywords:Fourier coefficients of automorphic forms, Dirichlet series, triple product $L$function, Perron's formula Categories:11F30, 11F66 

97. CMB 2015 (vol 59 pp. 3)
 Alfuraidan, Monther Rashed

The Contraction Principle for Multivalued Mappings on a Modular Metric Space with a Graph
We study the existence of fixed points for contraction multivalued
mappings in modular metric spaces endowed with a graph. The
notion of a modular metric on an arbitrary set and the corresponding
modular spaces, generalizing classical modulars over linear spaces
like Orlicz spaces, were recently introduced. This paper can
be seen as a generalization of Nadler's and Edelstein's fixed
point theorems to modular metric spaces endowed with a graph.
Keywords:fixed point theory, modular metric spaces, multivalued contraction mapping, connected digraph. Categories:47H09, 46B20, 47H10, 47E10 

98. CMB 2015 (vol 58 pp. 730)
 Efrat, Ido; Matzri, Eliyahu

Vanishing of Massey Products and Brauer Groups
Let $p$ be a prime number and $F$ a field containing a root of
unity of order $p$.
We relate recent results on vanishing of triple Massey products
in the mod$p$ Galois cohomology of $F$,
due to Hopkins, Wickelgren, MinÃ¡Ä, and TÃ¢n, to classical
results in the theory of central simple algebras.
For global fields, we prove a stronger form of the vanishing
property.
Keywords:Galois cohomology, Brauer groups, triple Massey products, global fields Categories:16K50, 11R34, 12G05, 12E30 

99. CMB 2015 (vol 58 pp. 580)
 Matringe, Nadir

A Specialisation of the BumpFriedberg $L$function
We study the restriction of the BumpFriedberg integrals to affine
lines $\{(s+\alpha,2s),s\in\mathbb{C}\}$.
It has a simple theory, very close to that of the Asai $L$function.
It is an integral representation of the product
$L(s+\alpha,\pi)L(2s,\Lambda^2,\pi)$ which we denote by $L^{lin}(s,\pi,\alpha)$
for this abstract, when $\pi$ is a cuspidal automorphic
representation of $GL(k,\mathbb{A})$ for
$\mathbb{A}$ the adeles of a number field. When $k$ is even, we show
that for a cuspidal automorphic representation $\pi$,
the partial $L$function $L^{lin,S}(s,\pi,\alpha)$ has a pole
at $1/2$, if and only if $\pi$ admits a (twisted) global
period, this gives a more direct proof of a
theorem of Jacquet and Friedberg, asserting
that $\pi$ has a twisted global period if and only if $L(\alpha+1/2,\pi)\neq
0$ and $L(1,\Lambda^2,\pi)=\infty$.
When $k$ is odd, the partial $L$function is holmorphic in a
neighbourhood of $Re(s)\geq 1/2$ when $Re(\alpha)$ is
$\geq 0$.
Keywords:automorphic L functions Categories:11F70, 11F66 

100. CMB 2015 (vol 58 pp. 530)
 Li, Benling; Shen, Zhongmin

Ricci Curvature Tensor and NonRiemannian Quantities
There are several notions of Ricci curvature tensor
in Finsler geometry and spray geometry. One of them is defined by the
Hessian of the wellknown Ricci curvature.
In this paper we will introduce a new notion of Ricci curvature
tensor and discuss its relationship with the Ricci curvature and some
nonRiemannian quantities. By this Ricci curvature tensor, we shall
have a better understanding on these nonRiemannian quantities.
Keywords:Finsler metrics, sprays, Ricci curvature, nonRiemanian quantity Categories:53B40, 53C60 
