Expand all Collapse all | Results 76 - 100 of 408 |
76. CMB 2011 (vol 56 pp. 593)
On the $p$-norm of an Integral Operator in the Half Plane We give a partial answer to a conjecture of DostaniÄ on the
determination of the norm of a class of integral operators induced
by the weighted Bergman projection in the upper half plane.
Keywords:Bergman projection, integral operator, $L^p$-norm, the upper half plane Categories:47B38, 47G10, 32A36 |
77. CMB 2011 (vol 56 pp. 184)
On Some Non-Riemannian Quantities in Finsler Geometry In this paper we study several non-Riemannian quantities in Finsler
geometry. These non-Riemannian quantities play an important role in
understanding the geometric properties of Finsler metrics. In
particular, we study a new non-Riemannian quantity defined by the
S-curvature. We show some relationships among the flag curvature,
the S-curvature, and the new non-Riemannian quantity.
Keywords:Finsler metric, S-curvature, non-Riemannian quantity Categories:53C60, 53B40 |
78. CMB 2011 (vol 56 pp. 225)
On the Notion of Visibility of Torsors Let $J$ be an abelian variety and
$A$ be an abelian subvariety of $J$, both defined over $\mathbf{Q}$.
Let $x$ be an element of $H^1(\mathbf{Q},A)$.
Then there are at least two definitions of $x$ being visible in $J$:
one asks that the torsor corresponding to $x$ be isomorphic over $\mathbf{Q}$
to a subvariety of $J$, and the other asks that $x$ be in the kernel
of the natural map $H^1(\mathbf{Q},A) \to H^1(\mathbf{Q},J)$. In this article, we
clarify the relation between the two definitions.
Keywords:torsors, principal homogeneous spaces, visibility, Shafarevich-Tate group Categories:11G35, 14G25 |
79. CMB 2011 (vol 56 pp. 39)
Comparison Theorem for Conjugate Points of a Fourth-order Linear Differential Equation In 1961, J. Barrett showed that if the first conjugate point
$\eta_1(a)$ exists for the differential equation $(r(x)y'')''=
p(x)y,$ where $r(x)\gt 0$ and $p(x)\gt 0$, then so does the first
systems-conjugate point $\widehat\eta_1(a)$. The aim of this note is to
extend this result to the general equation with middle term
$(q(x)y')'$ without further restriction on $q(x)$, other than
continuity.
Keywords:fourth-order linear differential equation, conjugate points, system-conjugate points, subwronskians Categories:47E05, 34B05, 34C10 |
80. CMB 2011 (vol 56 pp. 395)
Coessential Abelianization Morphisms in the Category of Groups An epimorphism $\phi\colon G\to H$ of groups, where $G$ has rank $n$, is called
coessential if every (ordered) generating $n$-tuple of $H$ can be
lifted along $\phi$ to a generating $n$-tuple for $G$. We discuss this
property in the context of the category of groups, and establish a criterion
for such a group $G$ to have the property that its abelianization
epimorphism $G\to G/[G,G]$, where $[G,G]$ is the commutator subgroup, is
coessential. We give an example of a family of 2-generator groups whose
abelianization epimorphism is not coessential.
This family also provides counterexamples to the generalized Andrews--Curtis conjecture.
Keywords:coessential epimorphism, Nielsen transformations, Andrew-Curtis transformations Categories:20F05, 20F99, 20J15 |
81. CMB 2011 (vol 56 pp. 510)
Linear Forms in Monic Integer Polynomials We prove a necessary and sufficient condition on the list of
nonzero integers $u_1,\dots,u_k$, $k \geq 2$, under which a monic
polynomial $f \in \mathbb{Z}[x]$ is expressible by a linear form
$u_1f_1+\dots+u_kf_k$ in monic polynomials $f_1,\dots,f_k \in
\mathbb{Z}[x]$. This condition is independent of $f$. We also show that if
this condition holds, then the monic polynomials $f_1,\dots,f_k$
can be chosen to be irreducible in $\mathbb{Z}[x]$.
Keywords:irreducible polynomial, height, linear form in polynomials, Eisenstein's criterion Categories:11R09, 11C08, 11B83 |
82. CMB 2011 (vol 56 pp. 412)
Structure in Sets with Logarithmic Doubling Suppose that $G$ is an abelian group, $A \subset G$ is finite with $|A+A| \leq K|A|$ and $\eta \in (0,1]$ is a parameter.
Our main result is that there is a set $\mathcal{L}$ such that
\begin{equation*}
|A \cap \operatorname{Span}(\mathcal{L})| \geq K^{-O_\eta(1)}|A| \quad\text{and}\quad |\mathcal{L}| = O(K^\eta\log |A|).
\end{equation*}
We include an application of this result to a generalisation of the Roth--Meshulam theorem due to Liu and Spencer.
Keywords:Fourier analysis, Freiman's theorem, capset problem Category:11B25 |
83. CMB 2011 (vol 56 pp. 442)
Closed Left Ideal Decompositions of $U(G)$ Let $G$ be an infinite discrete group and let $\beta G$ be the
Stone--Äech compactification of $G$. We take the points of $Äta
G$ to be the ultrafilters on $G$, identifying the principal
ultrafilters with the points of $G$. The set $U(G)$ of uniform
ultrafilters on $G$ is a closed two-sided ideal of $\beta G$. For
every $p\in U(G)$, define $I_p\subseteq\beta G$ by $I_p=\bigcap_{A\in
p}\operatorname{cl} (GU(A))$, where $U(A)=\{p\in U(G):A\in p\}$. We show
that if $|G|$ is a regular cardinal, then $\{I_p:p\in U(G)\}$ is the
finest decomposition of $U(G)$ into closed left ideals of $\beta G$
such that the corresponding quotient space of $U(G)$ is Hausdorff.
Keywords:Stone--Äech compactification, uniform ultrafilter, closed left ideal, decomposition Categories:22A15, 54H20, 22A30, 54D80 |
84. CMB 2011 (vol 56 pp. 400)
A Factorization Theorem for Multiplier Algebras of Reproducing Kernel Hilbert Spaces Let $(X,\mathcal B,\mu)$ be a $\sigma$-finite
measure space and let $H\subset L^2(X,\mu)$
be a separable reproducing kernel Hilbert
space on $X$. We show that the multiplier
algebra of $H$ has property $(A_1(1))$.
Keywords:reproducing kernel Hilbert space, Berezin transform, dual algebra Categories:46E22, 47B32, 47L45 |
85. CMB 2011 (vol 56 pp. 326)
Restricting Fourier Transforms of Measures to Curves in $\mathbb R^2$ We establish estimates for restrictions to certain curves in $\mathbb R^2$ of the Fourier transforms
of some fractal measures.
Keywords:Fourier transforms of fractal measures, Fourier restriction Categories:42B10, 28A12 |
86. CMB 2011 (vol 56 pp. 272)
On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate |
On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate In this note, we first give a characterization of super weakly
compact convex sets of a Banach space $X$:
a closed bounded convex set $K\subset X$ is
super weakly compact if and only if there exists a $w^*$ lower
semicontinuous seminorm $p$ with $p\geq\sigma_K\equiv\sup_{x\in
K}\langle\,\cdot\,,x\rangle$ such that $p^2$ is uniformly FrÃ©chet
differentiable on each bounded set of $X^*$. Then we present a
representation theorem for the dual of the semigroup $\textrm{swcc}(X)$
consisting of all the nonempty super weakly compact convex sets of the
space $X$.
Keywords:super weakly compact set, dual of normed semigroup, uniform FrÃ©chet differentiability, representation Categories:20M30, 46B10, 46B20, 46E15, 46J10, 49J50 |
87. CMB 2011 (vol 56 pp. 258)
The Smallest Pisot Element in the Field of Formal Power Series Over a Finite Field Dufresnoy and Pisot characterized the smallest
Pisot number of degree $n \geq 3$ by giving explicitly its minimal
polynomial. In this paper, we translate Dufresnoy and Pisot's
result to the Laurent series case.
The
aim of this paper is to prove that the minimal polynomial
of the smallest Pisot element (SPE) of degree $n$ in the field of
formal power series over a finite field
is given by $P(Y)=Y^{n}-\alpha XY^{n-1}-\alpha^n,$ where $\alpha$
is the least element of the finite field $\mathbb{F}_{q}\backslash\{0\}$
(as a finite total ordered set). We prove that the sequence of
SPEs of degree $n$ is decreasing and converges to $\alpha X.$
Finally, we show how to obtain explicit continued fraction
expansion of the smallest Pisot element over a finite field.
Keywords:Pisot element, continued fraction, Laurent series, finite fields Categories:11A55, 11D45, 11D72, 11J61, 11J66 |
88. CMB 2011 (vol 56 pp. 251)
Sign Changes of the Liouville Function on Quadratics Let $\lambda (n)$ denote the Liouville function. Complementary to the prime number theorem, Chowla conjectured
that
\begin{equation*}
\label{a.1}
\sum_{n\le x} \lambda (f(n)) =o(x)\tag{$*$}
\end{equation*}
for any polynomial $f(x)$ with integer coefficients which is not of
form $bg(x)^2$.
When $f(x)=x$, $(*)$ is equivalent to the prime number theorem.
Chowla's conjecture has been proved for linear functions,
but for degree
greater than 1, the conjecture seems
to be extremely hard and remains wide open.
One can consider a weaker form
of Chowla's conjecture.
Conjecture 1.
[Cassaigne et al.]
If $f(x) \in \mathbb{Z} [x]$ and is not in the form of $bg^2(x)$
for some $g(x)\in \mathbb{Z}[x]$, then $\lambda (f(n))$
changes sign infinitely often.
Clearly, Chowla's conjecture implies Conjecture 1.
Although weaker,
Conjecture 1 is still wide open for polynomials of degree $\gt 1$.
In this article, we study Conjecture 1 for
quadratic polynomials. One of our main theorems is the following.
Theorem 1
Let $f(x) = ax^2+bx +c $ with $a\gt 0$ and $l$
be a positive integer such that $al$ is
not a perfect square. If the
equation $f(n)=lm^2 $ has one solution
$(n_0,m_0) \in \mathbb{Z}^2$, then it has infinitely
many positive solutions $(n,m) \in \mathbb{N}^2$.
As a direct consequence of Theorem 1, we prove the following.
Theorem 2
Let $f(x)=ax^2+bx+c$ with $a \in \mathbb{N}$ and $b,c \in \mathbb{Z}$. Let
\[
A_0=\Bigl[\frac{|b|+(|D|+1)/2}{2a}\Bigr]+1.
\]
Then either the binary sequence $\{ \lambda (f(n)) \}_{n=A_0}^\infty$ is
a constant sequence or it changes sign infinitely often.
Some partial results of Conjecture 1 for quadratic polynomials are also proved using Theorem 1.
Keywords:Liouville function, Chowla's conjecture, prime number theorem, binary sequences, changes sign infinitely often, quadratic polynomials, Pell equation Categories:11N60, 11B83, 11D09 |
89. CMB 2011 (vol 56 pp. 388)
Application of Measure of Noncompactness to Infinite Systems of Differential Equations In this paper we determine the Hausdorff measure of noncompactness on
the sequence space $n(\phi)$ of W. L. C. Sargent.
Further we apply
the technique of measures of noncompactness to the theory of infinite
systems of differential equations in the Banach sequence spaces
$n(\phi)$ and $m(\phi)$. Our aim is to present some existence results
for infinite systems of differential equations formulated with the help
of measures of noncompactness.
Keywords:sequence spaces, BK spaces, measure of noncompactness, infinite system of differential equations Categories:46B15, 46B45, 46B50, 34A34, 34G20 |
90. CMB 2011 (vol 56 pp. 354)
The Sizes of Rearrangements of Cantor Sets A linear Cantor set $C$ with zero Lebesgue measure is associated with
the countable collection of the bounded complementary open intervals. A
rearrangment of $C$ has the same lengths of its complementary
intervals, but with different locations. We study the Hausdorff and packing
$h$-measures and dimensional properties of the set of all rearrangments of
some given $C$ for general dimension functions $h$. For each set of
complementary lengths, we construct a Cantor set rearrangement which has the
maximal Hausdorff and the minimal packing $h$-premeasure, up to a constant.
We also show that if the packing measure of this Cantor set is positive,
then there is a rearrangement which has infinite packing measure.
Keywords:Hausdorff dimension, packing dimension, dimension functions, Cantor sets, cut-out set Categories:28A78, 28A80 |
91. CMB 2011 (vol 56 pp. 500)
The Lang--Weil Estimate for Cubic Hypersurfaces An improved estimate is provided for the number of $\mathbb{F}_q$-rational points
on a geometrically irreducible, projective, cubic hypersurface that is
not equal to a cone.
Keywords:cubic hypersurface, rational points, finite fields Categories:11G25, 14G15 |
92. CMB 2011 (vol 56 pp. 292)
Quasisymmetrically Minimal Moran Sets M. Hu and S. Wen considered quasisymmetrically minimal uniform Cantor
sets of Hausdorff dimension $1$, where at the $k$-th set one removes
from each interval $I$ a certain number $n_{k}$ of open subintervals
of length $c_{k}|I|$, leaving $(n_{k}+1)$ closed subintervals of
equal length. Quasisymmetrically Moran sets of Hausdorff dimension $1$
considered in the paper are more general than uniform Cantor sets in
that neither the open subintervals nor the closed subintervals are
required to be of equal length.
Keywords:quasisymmetric, Moran set, Hausdorff dimension Categories:28A80, 54C30 |
93. CMB 2011 (vol 56 pp. 265)
Embedding Distributions of Generalized Fan Graphs Total embedding distributions have been known for a few classes of graphs.
Chen, Gross, and Rieper
computed it for necklaces, close-end ladders and cobblestone
paths. Kwak and Shim computed it for bouquets of circles and
dipoles. In this paper, a splitting theorem is generalized
and the embedding distributions of
generalized fan graphs are obtained.
Keywords:total embedding distribution, splitting theorem, generalized fan graphs Category:05C10 |
94. CMB 2011 (vol 56 pp. 127)
Evolution of Eigenvalues along Rescaled Ricci Flow In this paper, we discuss monotonicity formulae of various entropy functionals under various
rescaled versions of Ricci flow. As an application, we prove that the lowest eigenvalue
of a family of geometric operators $-4\Delta + kR$ is monotonic along the
normalized Ricci flow for all $k\ge 1$ provided the initial manifold has
nonpositive total scalar curvature.
Keywords:monotonicity formulas, Ricci flow Categories:58C40, 53C44 |
95. CMB 2011 (vol 55 pp. 842)
The Rank of Jacobian Varieties over the Maximal Abelian Extensions of Number Fields: Towards the Frey-Jarden Conjecture |
The Rank of Jacobian Varieties over the Maximal Abelian Extensions of Number Fields: Towards the Frey-Jarden Conjecture Frey and Jarden asked if
any abelian variety over a number field $K$
has the infinite Mordell-Weil rank over
the maximal abelian extension $K^{\operatorname{ab}}$.
In this paper,
we give an affirmative answer to their conjecture
for the Jacobian variety
of any smooth projective curve $C$
over $K$
such that $\sharp C(K^{\operatorname{ab}})=\infty$
and for any abelian variety of $\operatorname{GL}_2$-type with trivial character.
Keywords:Mordell-Weil rank, Jacobian varieties, Frey-Jarden conjecture, abelian points Categories:11G05, 11D25, 14G25, 14K07 |
96. CMB 2011 (vol 56 pp. 283)
Transcendental Solutions of a Class of Minimal Functional Equations We prove a result concerning power series
$f(z)\in\mathbb{C}[\mkern-3mu[z]\mkern-3mu]$
satisfying a functional equation of the form
$$
f(z^d)=\sum_{k=1}^n
\frac{A_k(z)}{B_k(z)}f(z)^k,
$$
where $A_k(z),B_k(z)\in
\mathbb{C}[z]$. In particular, we show that if $f(z)$ satisfies a
minimal functional equation of the above form with $n\geqslant 2$,
then $f(z)$ is necessarily transcendental. Towards a more complete
classification, the case $n=1$ is also considered.
Keywords:transcendence, generating functions, Mahler-type functional equation Categories:11B37, 11B83, , 11J91 |
97. CMB 2011 (vol 56 pp. 366)
Multiple Solutions for Nonlinear Periodic Problems We consider a nonlinear periodic problem driven by a
nonlinear nonhomogeneous differential operator and a
CarathÃ©odory reaction term $f(t,x)$ that exhibits a
$(p-1)$-superlinear growth in $x \in \mathbb{R}$
near $\pm\infty$ and near zero.
A special case of the differential operator is the scalar
$p$-Laplacian. Using a combination of variational methods based on
the critical point theory with Morse theory (critical groups), we
show that the problem has three nontrivial solutions, two of which
have constant sign (one positive, the other negative).
Keywords:$C$-condition, mountain pass theorem, critical groups, strong deformation retract, contractible space, homotopy invariance Categories:34B15, 34B18, 34C25, 58E05 |
98. CMB 2011 (vol 56 pp. 3)
Semiclassical Limits of Eigenfunctions on Flat $n$-Dimensional Tori We provide a proof of a conjecture by Jakobson, Nadirashvili, and
Toth stating
that on an $n$-dimensional flat torus $\mathbb T^{n}$, and the Fourier transform
of squares of the eigenfunctions $|\varphi_\lambda|^2$ of the Laplacian have
uniform $l^n$ bounds that do not depend on the eigenvalue $\lambda$. The proof
is a generalization of an argument by Jakobson, et al. for the
lower dimensional cases. These results imply uniform bounds for semiclassical
limits on $\mathbb T^{n+2}$. We also prove a geometric lemma that bounds the number of
codimension-one simplices satisfying a certain restriction on an
$n$-dimensional sphere $S^n(\lambda)$ of radius $\sqrt{\lambda}$, and we use it in
the proof.
Keywords:semiclassical limits, eigenfunctions of Laplacian on a torus, quantum limits Categories:58G25, 81Q50, 35P20, 42B05 |
99. CMB 2011 (vol 56 pp. 203)
Productively LindelÃ¶f Spaces May All Be $D$ We give easy proofs that (a) the Continuum Hypothesis implies that if
the product of $X$ with every LindelÃ¶f space is LindelÃ¶f, then $X$ is
a $D$-space, and (b) Borel's Conjecture implies every Rothberger space
is Hurewicz.
Keywords:productively LindelÃ¶f, $D$-space, projectively $\sigma$-compact, Menger, Hurewicz Categories:54D20, 54B10, 54D55, 54A20, 03F50 |
100. CMB 2011 (vol 55 pp. 233)
On Algebraically Maximal Valued Fields and Defectless Extensions Let $v$ be a Henselian Krull valuation of a field $K$. In this paper,
the authors give some necessary and sufficient conditions for a
finite simple extension of $(K,v)$ to be defectless. Various
characterizations of algebraically maximal valued fields are also
given which lead to a new proof of a result proved by Yu. L. Ershov.
Keywords:valued fields, non-Archimedean valued fields Categories:12J10, 12J25 |