CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword f

  Expand all        Collapse all Results 51 - 75 of 440

51. CMB 2013 (vol 57 pp. 870)

Parlier, Hugo
A Short Note on Short Pants
It is a theorem of Bers that any closed hyperbolic surface admits a pants decomposition consisting of curves of bounded length where the bound only depends on the topology of the surface. The question of the quantification of the optimal constants has been well studied and the best upper bounds to date are linear in genus, a theorem of Buser and Seppälä. The goal of this note is to give a short proof of a linear upper bound which slightly improve the best known bound.

Keywords:hyperbolic surfaces, geodesics, pants decompositions
Categories:30F10, 32G15, 53C22

52. CMB 2013 (vol 57 pp. 845)

Lei, Antonio
Factorisation of Two-variable $p$-adic $L$-functions
Let $f$ be a modular form which is non-ordinary at $p$. Loeffler has recently constructed four two-variable $p$-adic $L$-functions associated to $f$. In the case where $a_p=0$, he showed that, as in the one-variable case, Pollack's plus and minus splitting applies to these new objects. In this article, we show that such a splitting can be generalised to the case where $a_p\ne0$ using Sprung's logarithmic matrix.

Keywords:modular forms, p-adic L-functions, supersingular primes
Categories:11S40, 11S80

53. CMB 2013 (vol 57 pp. 463)

Bownik, Marcin; Jasper, John
Constructive Proof of Carpenter's Theorem
We give a constructive proof of Carpenter's Theorem due to Kadison. Unlike the original proof our approach also yields the real case of this theorem.

Keywords:diagonals of projections, the Schur-Horn theorem, the Pythagorean theorem, the Carpenter theorem, spectral theory
Categories:42C15, 47B15, 46C05

54. CMB 2013 (vol 57 pp. 585)

Lehec, Joseph
Short Probabilistic Proof of the Brascamp-Lieb and Barthe Theorems
We give a short proof of the Brascamp-Lieb theorem, which asserts that a certain general form of Young's convolution inequality is saturated by Gaussian functions. The argument is inspired by Borell's stochastic proof of the Prékopa-Leindler inequality and applies also to the reversed Brascamp-Lieb inequality, due to Barthe.

Keywords:functional inequalities, Brownian motion
Categories:39B62, 60J65

55. CMB 2013 (vol 57 pp. 526)

Heil, Wolfgang; Wang, Dongxu
On $3$-manifolds with Torus or Klein Bottle Category Two
A subset $W$ of a closed manifold $M$ is $K$-contractible, where $K$ is a torus or Kleinbottle, if the inclusion $W\rightarrow M$ factors homotopically through a map to $K$. The image of $\pi_1 (W)$ (for any base point) is a subgroup of $\pi_1 (M)$ that is isomorphic to a subgroup of a quotient group of $\pi_1 (K)$. Subsets of $M$ with this latter property are called $\mathcal{G}_K$-contractible. We obtain a list of the closed $3$-manifolds that can be covered by two open $\mathcal{G}_K$-contractible subsets. This is applied to obtain a list of the possible closed prime $3$-manifolds that can be covered by two open $K$-contractible subsets.

Keywords:Lusternik--Schnirelmann category, coverings of $3$-manifolds by open $K$-contractible sets
Categories:57N10, 55M30, 57M27, 57N16

56. CMB 2013 (vol 57 pp. 119)

Mildenberger, Heike; Raghavan, Dilip; Steprans, Juris
Splitting Families and Complete Separability
We answer a question from Raghavan and Steprāns by showing that $\mathfrak{s} = {\mathfrak{s}}_{\omega, \omega}$. Then we use this to construct a completely separable maximal almost disjoint family under $\mathfrak{s} \leq \mathfrak{a}$, partially answering a question of Shelah.

Keywords:maximal almost disjoint family, cardinal invariants
Categories:03E05, 03E17, 03E65

57. CMB Online first

 
Left-orderable fundamental group and Dehn surgery on the knot $5_2$
We show that the resulting manifold by $r$-surgery on the knot $5_2$, which is the two-bridge knot corresponding to the rational number $3/7$, has left-orderable fundamental group if the slope $r$ satisfies $0\le r \le 4$.

Keywords:left-ordering, Dehn surgery
Categories:57M25, 06F15

58. CMB Online first

 
Left-orderable fundamental group and Dehn surgery on the knot $5_2$
We show that the resulting manifold by $r$-surgery on the knot $5_2$, which is the two-bridge knot corresponding to the rational number $3/7$, has left-orderable fundamental group if the slope $r$ satisfies $0\le r \le 4$.

Keywords:left-ordering, Dehn surgery
Categories:57M25, 06F15

59. CMB 2013 (vol 57 pp. 245)

Brodskiy, N.; Dydak, J.; Lang, U.
Assouad-Nagata Dimension of Wreath Products of Groups
Consider the wreath product $H\wr G$, where $H\ne 1$ is finite and $G$ is finitely generated. We show that the Assouad-Nagata dimension $\dim_{AN}(H\wr G)$ of $H\wr G$ depends on the growth of $G$ as follows: \par If the growth of $G$ is not bounded by a linear function, then $\dim_{AN}(H\wr G)=\infty$, otherwise $\dim_{AN}(H\wr G)=\dim_{AN}(G)\leq 1$.

Keywords:Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups
Categories:54F45, 55M10, 54C65

60. CMB 2013 (vol 57 pp. 439)

Yang, YanHong
The Fixed Point Locus of the Verschiebung on $\mathcal{M}_X(2, 0)$ for Genus-2 Curves $X$ in Charateristic $2$
We prove that for every ordinary genus-$2$ curve $X$ over a finite field $\kappa$ of characteristic $2$ with $\textrm{Aut}(X/\kappa)=\mathbb{Z}/2\mathbb{Z} \times S_3$, there exist $\textrm{SL}(2,\kappa[\![s]\!])$-representations of $\pi_1(X)$ such that the image of $\pi_1(\overline{X})$ is infinite. This result produces a family of examples similar to Laszlo's counterexample to de Jong's question regarding the finiteness of the geometric monodromy of representations of the fundamental group.

Keywords:vector bundle, Frobenius pullback, representation, etale fundamental group
Categories:14H60, 14D05, 14G15

61. CMB 2013 (vol 57 pp. 381)

Łydka, Adrian
On Complex Explicit Formulae Connected with the Möbius Function of an Elliptic Curve
We study analytic properties function $m(z, E)$, which is defined on the upper half-plane as an integral from the shifted $L$-function of an elliptic curve. We show that $m(z, E)$ analytically continues to a meromorphic function on the whole complex plane and satisfies certain functional equation. Moreover, we give explicit formula for $m(z, E)$ in the strip $|\Im{z}|\lt 2\pi$.

Keywords:L-function, Möbius function, explicit formulae, elliptic curve
Categories:11M36, 11G40

62. CMB 2013 (vol 57 pp. 310)

Hakamata, Ryoto; Teragaito, Masakazu
Left-orderable Fundamental Group and Dehn Surgery on the Knot $5_2$
We show that the resulting manifold by $r$-surgery on the knot $5_2$, which is the two-bridge knot corresponding to the rational number $3/7$, has left-orderable fundamental group if the slope $r$ satisfies $0\le r \le 4$.

Keywords:left-ordering, Dehn surgery
Categories:57M25, 06F15

63. CMB 2013 (vol 57 pp. 821)

Jeong, Imsoon; Kim, Seonhui; Suh, Young Jin
Real Hypersurfaces in Complex Two-Plane Grassmannians with Reeb Parallel Structure Jacobi Operator
In this paper we give a characterization of a real hypersurface of Type~$(A)$ in complex two-plane Grassmannians ${ { {G_2({\mathbb C}^{m+2})} } }$, which means a tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in ${G_2({\mathbb C}^{m+2})}$, by the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.

Keywords:real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator
Categories:53C40, 53C15

64. CMB 2013 (vol 57 pp. 506)

Galindo, César
On Braided and Ribbon Unitary Fusion Categories
We prove that every braiding over a unitary fusion category is unitary and every unitary braided fusion category admits a unique unitary ribbon structure.

Keywords:fusion categories, braided categories, modular categories
Categories:20F36, 16W30, 18D10

65. CMB 2013 (vol 57 pp. 401)

Perrone, Domenico
Curvature of $K$-contact Semi-Riemannian Manifolds
In this paper we characterize $K$-contact semi-Riemannian manifolds and Sasakian semi-Riemannian manifolds in terms of curvature. Moreover, we show that any conformally flat $K$-contact semi-Riemannian manifold is Sasakian and of constant sectional curvature $\kappa=\varepsilon$, where $\varepsilon =\pm 1$ denotes the causal character of the Reeb vector field. Finally, we give some results about the curvature of a $K$-contact Lorentzian manifold.

Keywords:contact semi-Riemannian structures, $K$-contact structures, conformally flat manifolds, Einstein Lorentzian-Sasaki manifolds
Categories:53C50, 53C25, 53B30

66. CMB 2013 (vol 57 pp. 254)

Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
The unitary extension principle (UEP) by Ron and Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP-type wavelet system. We derive a condition that is necessary for the extension of a UEP-type wavelet system to any Parseval wavelet frame with any number of generators, and prove that this condition is also sufficient to ensure that an extension with just two generators is possible.

Keywords:Bessel sequences, frames, extension of wavelet Bessel system to tight frame, wavelet systems, unitary extension principle
Categories:42C15, 42C40

67. CMB 2013 (vol 57 pp. 449)

Alaghmandan, Mahmood; Choi, Yemon; Samei, Ebrahim
ZL-amenability Constants of Finite Groups with Two Character Degrees
We calculate the exact amenability constant of the centre of $\ell^1(G)$ when $G$ is one of the following classes of finite group: dihedral; extraspecial; or Frobenius with abelian complement and kernel. This is done using a formula which applies to all finite groups with two character degrees. In passing, we answer in the negative a question raised in work of the third author with Azimifard and Spronk (J. Funct. Anal. 2009).

Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups
Categories:43A20, 20C15

68. CMB 2013 (vol 57 pp. 141)

Mukwembi, Simon
Size, Order, and Connected Domination
We give a sharp upper bound on the size of a triangle-free graph of a given order and connected domination. Our bound, apart from strengthening an old classical theorem of Mantel and of Turán , improves on a theorem of Sanchis. Further, as corollaries, we settle a long standing conjecture of Graffiti on the leaf number and local independence for triangle-free graphs and answer a question of Griggs, Kleitman and Shastri on a lower bound of the leaf number in triangle-free graphs.

Keywords:size, connected domination, local independence number, leaf number
Category:05C69

69. CMB 2013 (vol 57 pp. 125)

Mlaiki, Nabil M.
Camina Triples
In this paper, we study Camina triples. Camina triples are a generalization of Camina pairs. Camina pairs were first introduced in 1978 by A .R. Camina. Camina's work was inspired by the study of Frobenius groups. We show that if $(G,N,M)$ is a Camina triple, then either $G/N$ is a $p$-group, or $M$ is abelian, or $M$ has a non-trivial nilpotent or Frobenius quotient.

Keywords:Camina triples, Camina pairs, nilpotent groups, vanishing off subgroup, irreducible characters, solvable groups
Category:20D15

70. CMB 2013 (vol 57 pp. 357)

Lauret, Emilio A.
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds
Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the full isometry group $G$ of $\mathbb{R}^n$. We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and $\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups $\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the right regular representations $L^2(\Gamma_1\backslash G)$ and $L^2(\Gamma_2\backslash G)$ are unitarily equivalent.

Keywords:representation equivalent, strongly isospectrality, compact flat manifolds
Categories:58J53, 22D10

71. CMB 2013 (vol 57 pp. 335)

Karassev, A.; Todorov, V.; Valov, V.
Alexandroff Manifolds and Homogeneous Continua
ny homogeneous, metric $ANR$-continuum is a $V^n_G$-continuum provided $\dim_GX=n\geq 1$ and $\check{H}^n(X;G)\neq 0$, where $G$ is a principal ideal domain. This implies that any homogeneous $n$-dimensional metric $ANR$-continuum is a $V^n$-continuum in the sense of Alexandroff. We also prove that any finite-dimensional homogeneous metric continuum $X$, satisfying $\check{H}^n(X;G)\neq 0$ for some group $G$ and $n\geq 1$, cannot be separated by a compactum $K$ with $\check{H}^{n-1}(K;G)=0$ and $\dim_G K\leq n-1$. This provides a partial answer to a question of Kallipoliti-Papasoglu whether any two-dimensional homogeneous Peano continuum cannot be separated by arcs.

Keywords:Cantor manifold, cohomological dimension, cohomology groups, homogeneous compactum, separator, $V^n$-continuum
Categories:54F45, 54F15

72. CMB 2013 (vol 57 pp. 364)

Li, Lei; Wang, Ya-Shu
How Lipschitz Functions Characterize the Underlying Metric Spaces
Let $X, Y$ be metric spaces and $E, F$ be Banach spaces. Suppose that both $X,Y$ are realcompact, or both $E,F$ are realcompact. The zero set of a vector-valued function $f$ is denoted by $z(f)$. A linear bijection $T$ between local or generalized Lipschitz vector-valued function spaces is said to preserve zero-set containments or nonvanishing functions if \[z(f)\subseteq z(g)\quad\Longleftrightarrow\quad z(Tf)\subseteq z(Tg),\] or \[z(f) = \emptyset\quad \Longleftrightarrow\quad z(Tf)=\emptyset,\] respectively. Every zero-set containment preserver, and every nonvanishing function preserver when $\dim E =\dim F\lt +\infty$, is a weighted composition operator $(Tf)(y)=J_y(f(\tau(y)))$. We show that the map $\tau\colon Y\to X$ is a locally (little) Lipschitz homeomorphism.

Keywords:(generalized, locally, little) Lipschitz functions, zero-set containment preservers, biseparating maps
Categories:46E40, 54D60, 46E15

73. CMB 2013 (vol 56 pp. 729)

Currey, B.; Mayeli, A.
The Orthonormal Dilation Property for Abstract Parseval Wavelet Frames
In this work we introduce a class of discrete groups containing subgroups of abstract translations and dilations, respectively. A variety of wavelet systems can appear as $\pi(\Gamma)\psi$, where $\pi$ is a unitary representation of a wavelet group and $\Gamma$ is the abstract pseudo-lattice $\Gamma$. We prove a condition in order that a Parseval frame $\pi(\Gamma)\psi$ can be dilated to an orthonormal basis of the form $\tau(\Gamma)\Psi$ where $\tau$ is a super-representation of $\pi$. For a subclass of groups that includes the case where the translation subgroup is Heisenberg, we show that this condition always holds, and we cite familiar examples as applications.

Keywords:frame, dilation, wavelet, Baumslag-Solitar group, shearlet
Categories:43A65, 42C40, 42C15

74. CMB 2013 (vol 56 pp. 449)

Akbari, S.; Chavooshi, M.; Ghanbari, M.; Zare, S.
The $f$-Chromatic Index of a Graph Whose $f$-Core has Maximum Degree $2$
Let $G$ be a graph. The minimum number of colors needed to color the edges of $G$ is called the chromatic index of $G$ and is denoted by $\chi'(G)$. It is well-known that $\Delta(G) \leq \chi'(G) \leq \Delta(G)+1$, for any graph $G$, where $\Delta(G)$ denotes the maximum degree of $G$. A graph $G$ is said to be Class $1$ if $\chi'(G) = \Delta(G)$ and Class $2$ if $\chi'(G) = \Delta(G) + 1$. Also, $G_\Delta$ is the induced subgraph on all vertices of degree $\Delta(G)$. Let $f:V(G)\rightarrow \mathbb{N}$ be a function. An $f$-coloring of a graph $G$ is a coloring of the edges of $E(G)$ such that each color appears at each vertex $v\in V(G)$ at most $f (v)$ times. The minimum number of colors needed to $f$-color $G$ is called the $f$-chromatic index of $G$ and is denoted by $\chi'_{f}(G)$. It was shown that for every graph $G$, $\Delta_{f}(G)\le \chi'_{f}(G)\le \Delta_{f}(G)+1$, where $\Delta_{f}(G)=\max_{v\in V(G)} \big\lceil \frac{d_G(v)}{f(v)}\big\rceil$. A graph $G$ is said to be $f$-Class $1$ if $\chi'_{f}(G)=\Delta_{f}(G)$, and $f$-Class $2$, otherwise. Also, $G_{\Delta_f}$ is the induced subgraph of $G$ on $\{v\in V(G):\,\frac{d_G(v)}{f(v)}=\Delta_{f}(G)\}$. Hilton and Zhao showed that if $G_{\Delta}$ has maximum degree two and $G$ is Class $2$, then $G$ is critical, $G_{\Delta}$ is a disjoint union of cycles and $\delta(G)=\Delta(G)-1$, where $\delta(G)$ denotes the minimum degree of $G$, respectively. In this paper, we generalize this theorem to $f$-coloring of graphs. Also, we determine the $f$-chromatic index of a connected graph $G$ with $|G_{\Delta_f}|\le 4$.

Keywords:$f$-coloring, $f$-Core, $f$-Class $1$
Categories:05C15, 05C38

75. CMB Online first

Zhang, Jiao; Wang, Qing-Wen
An Explicit Formula for the Generalized Cyclic Shuffle Map
We provide an explicit formula for the generalized cyclic shuffle map for cylindrical modules. Using this formula we give a combinatorial proof of the generalized cyclic Eilenberg-Zilber theorem.

Keywords:generalized Cyclic shuffle map, Cylindrical module, Eilenberg-Zilber theorem, Cyclic homology
Categories:19D55, 05E45
Page
   1 2 3 4 ... 18    

© Canadian Mathematical Society, 2014 : https://cms.math.ca/