Expand all Collapse all | Results 51 - 75 of 459 |
51. CMB 2014 (vol 58 pp. 7)
Characters on $C(X)$ The precise condition on a completely regular space $X$ for every character on
$C(X) $ to be an evaluation at some point in $X$ is that $X$ be
realcompact. Usually, this classical result is obtained relying heavily on
involved (and even nonconstructive) extension arguments. This note provides a
direct proof that is accessible to a large audience.
Keywords:characters, realcompact, evaluation, real-valued continuous functions Categories:54C30, 46E25 |
52. CMB 2014 (vol 57 pp. 708)
Strong Asymptotic Freeness for Free Orthogonal Quantum Groups It is known that the normalized standard generators of the free
orthogonal quantum group $O_N^+$ converge in distribution to a free
semicircular system as $N \to \infty$. In this note, we
substantially improve this convergence result by proving that, in
addition to distributional convergence, the operator norm of any
non-commutative polynomial in the normalized standard generators of
$O_N^+$ converges as $N \to \infty$ to the operator norm of the
corresponding non-commutative polynomial in a standard free
semicircular system. Analogous strong convergence results are obtained
for the generators of free unitary quantum groups. As applications of
these results, we obtain a matrix-coefficient version of our strong
convergence theorem, and we recover a well known $L^2$-$L^\infty$ norm
equivalence for non-commutative polynomials in free semicircular
systems.
Keywords:quantum groups, free probability, asymptotic free independence, strong convergence, property of rapid decay Categories:46L54, 20G42, 46L65 |
53. CMB 2014 (vol 57 pp. 834)
Restriction Operators Acting on Radial Functions on Vector Spaces Over Finite Fields We study $L^p-L^r$ restriction estimates for
algebraic varieties $V$ in the case when restriction operators act on
radial functions in the finite field setting.
We show that if the varieties $V$ lie in odd dimensional vector
spaces over finite fields, then the conjectured restriction estimates
are possible for all radial test functions.
In addition, assuming that the varieties $V$ are defined in even
dimensional spaces and have few intersection points with the sphere
of zero radius, we also obtain the conjectured exponents for all
radial test functions.
Keywords:finite fields, radial functions, restriction operators Categories:42B05, 43A32, 43A15 |
54. CMB Online first
Approximate Fixed Point Sequences of Nonlinear Semigroup in Metric Spaces In this paper, we investigate the common
approximate fixed point sequences of nonexpansive semigroups of
nonlinear mappings $\{T_t\}_{t \geq 0}$, i.e., a family such that
$T_0(x)=x$, $T_{s+t}=T_s(T_t(x))$, where the domain is a metric space
$(M,d)$. In particular we prove that under suitable conditions, the
common approximate fixed point sequences set is the same as the common
approximate fixed point sequences set of two mappings from the family.
Then we use the Ishikawa iteration to construct a common approximate
fixed point sequence of nonexpansive semigroups of nonlinear
mappings.
Keywords:approximate fixed point, fixed point, hyperbolic metric space, Ishikawa iterations, nonexpansive mapping, semigroup of mappings, uniformly convex hyperbolic space Categories:47H09, 46B20, 47H10, 47E10 |
55. CMB 2014 (vol 57 pp. 648)
On the ${\mathcal F}{\Phi}$-Hypercentre of Finite Groups Let $G$ be a finite group, $\mathcal F$ a class of groups.
Then $Z_{{\mathcal F}{\Phi}}(G)$ is the ${\mathcal F}{\Phi}$-hypercentre
of $G$ which is the product of all normal subgroups of $G$ whose
non-Frattini $G$-chief factors are $\mathcal F$-central in $G$. A
subgroup $H$ is called $\mathcal M$-supplemented in a finite group
$G$, if there exists a subgroup $B$ of $G$ such that $G=HB$ and
$H_1B$ is a proper subgroup of $G$ for any maximal subgroup $H_1$
of $H$. The main purpose of this paper is to prove: Let $E$ be a
normal subgroup of a group $G$. Suppose that every noncyclic
Sylow
subgroup $P$ of $F^{*}(E)$ has a subgroup $D$ such that
$1\lt |D|\lt |P|$ and every subgroup $H$ of $P$ with order $|H|=|D|$
is
$\mathcal M$-supplemented in $G$, then $E\leq Z_{{\mathcal
U}{\Phi}}(G)$.
Keywords:${\mathcal F}{\Phi}$-hypercentre, Sylow subgroups, $\mathcal M$-supplemented subgroups, formation Categories:20D10, 20D20 |
56. CMB 2014 (vol 57 pp. 477)
On Set Theoretically and Cohomologically Complete Intersection Ideals Let $(R,\mathfrak m)$ be a local ring and $\mathfrak a$ be an ideal of $R$. The inequalities
\[
\operatorname{ht}(\mathfrak a) \leq \operatorname{cd}(\mathfrak a,R) \leq
\operatorname{ara}(\mathfrak a) \leq
l(\mathfrak a) \leq \mu(\mathfrak a)
\]
are known. It is an interesting and long-standing problem to find
out the cases giving equality. Thanks to the formal grade we give
conditions in which the above inequalities become
equalities.
Keywords:set-theoretically and cohomologically complete intersection ideals, analytic spread, monomials, formal grade, depth of powers of ideals Categories:13D45, 13C14 |
57. CMB 2014 (vol 57 pp. 579)
On the Hereditary Paracompactness of Locally Compact, Hereditarily Normal Spaces We establish that if it is consistent that there is a
supercompact cardinal, then it is consistent that every locally
compact, hereditarily normal space which does not include a perfect
pre-image of $\omega_1$ is hereditarily paracompact.
Keywords:locally compact, hereditarily normal, paracompact, Axiom R, PFA$^{++}$ Categories:54D35, 54D15, 54D20, 54D45, 03E65, 03E35 |
58. CMB 2014 (vol 57 pp. 803)
Free Locally Convex Spaces and the $k$-space Property Let $L(X)$ be the free locally convex space over a Tychonoff space $X$. Then $L(X)$ is a $k$-space if and only if $X$ is a countable discrete space. We prove also that $L(D)$ has uncountable tightness for every uncountable discrete space $D$.
Keywords:free locally convex space, $k$-space, countable tightness Categories:46A03, 54D50, 54A25 |
59. CMB 2014 (vol 57 pp. 485)
Fourier Coefficients of Vector-valued Modular Forms of Dimension $2$ We prove the following Theorem. Suppose that $F=(f_1, f_2)$ is a $2$-dimensional vector-valued modular form
on $\operatorname{SL}_2(\mathbb{Z})$ whose component functions $f_1, f_2$ have rational Fourier coefficients
with bounded denominators. Then $f_1$ and $f_2$ are classical modular forms on a congruence subgroup of the modular group.
Keywords:vector-valued modular form, modular group, bounded denominators Categories:11F41, 11G99 |
60. CMB 2014 (vol 58 pp. 30)
On an Exponential Functional Inequality and its Distributional Version Let $G$ be a group and $\mathbb K=\mathbb C$ or $\mathbb
R$.
In this article, as a generalization of the result of Albert
and Baker,
we investigate the behavior of bounded
and unbounded functions $f\colon G\to \mathbb K$ satisfying the inequality
$
\Bigl|f
\Bigl(\sum_{k=1}^n x_k
\Bigr)-\prod_{k=1}^n f(x_k)
\Bigr|\le \phi(x_2, \dots, x_n),\quad \forall\, x_1, \dots,
x_n\in G,
$
where $\phi\colon G^{n-1}\to [0, \infty)$. Also, as a distributional
version of the above inequality we consider the stability of
the functional equation
\begin{equation*}
u\circ S - \overbrace{u\otimes \cdots \otimes u}^{n-\text {times}}=0,
\end{equation*}
where $u$ is a Schwartz distribution or Gelfand hyperfunction,
$\circ$ and $\otimes$ are the pullback and tensor product of
distributions, respectively, and $S(x_1, \dots, x_n)=x_1+ \dots
+x_n$.
Keywords:distribution, exponential functional equation, Gelfand hyperfunction, stability Categories:46F99, 39B82 |
61. CMB 2014 (vol 57 pp. 780)
Measures of Noncompactness in Regular Spaces Previous results by the author on the connection
between three of measures
of non-compactness obtained for $L_p$, are extended
to regular spaces of measurable
functions.
An example of advantage
in some cases one of them in comparison with another is given.
Geometric characteristics of regular spaces are determined.
New theorems for $(k,\beta)$-boundedness of partially additive
operators are proved.
Keywords:measure of non-compactness, condensing map, partially additive operator, regular space, ideal space Categories:47H08, 46E30, 47H99, 47G10 |
62. CMB 2014 (vol 58 pp. 71)
Limited Sets and Bibasic Sequences Bibasic sequences are used to study relative weak compactness
and relative norm compactness of limited sets.
Keywords:limited sets, $L$-sets, bibasic sequences, the Dunford-Pettis property Categories:46B20, 46B28, 28B05 |
63. CMB 2014 (vol 58 pp. 44)
Orbits of Geometric Descent We prove that quasiconvex functions always admit descent trajectories
bypassing all non-minimizing critical points.
Keywords:differential inclusion, quasiconvex function, self-contracted curve, sweeping process Categories:34A60, 49J99 |
64. CMB 2014 (vol 58 pp. 110)
Property T and Amenable Transformation Group $C^*$-algebras It is well known that a discrete group which is both amenable and
has Kazhdan's Property T must be finite. In this note we generalize
the above statement to the case of transformation groups. We show
that if $G$ is a discrete amenable group acting on a compact
Hausdorff space $X$, then the transformation group $C^*$-algebra
$C^*(X, G)$ has Property T if and only if both $X$ and $G$ are finite. Our
approach does not rely on the use of tracial states on $C^*(X, G)$.
Keywords:Property T, $C^*$-algebras, transformation group, amenable Categories:46L55, 46L05 |
65. CMB 2014 (vol 57 pp. 721)
Classification of Integral Modular Categories of Frobenius--Perron Dimension $pq^4$ and $p^2q^2$ We classify integral modular categories of dimension $pq^4$ and $p^2q^2$,
where
$p$ and $q$ are distinct primes. We show that such categories are always
group-theoretical except for categories of dimension $4q^2$.
In these cases there are
well-known examples of non-group-theoretical categories, coming from
centers of
Tambara-Yamagami categories and quantum groups. We show that a
non-group-theoretical integral modular category of dimension $4q^2$ is
equivalent to either one of these well-known examples or is of dimension
$36$ and is twist-equivalent to fusion categories arising from a
certain quantum group.
Keywords:modular categories, fusion categories Category:18D10 |
66. CMB 2014 (vol 57 pp. 431)
The Rasmussen Invariant, Four-genus and Three-genus of an Almost Positive Knot Are Equal An oriented link is positive if it has a link diagram whose crossings are all positive.
An oriented link is almost positive if it is not positive and has a link diagram with exactly one negative crossing.
It is known that the Rasmussen invariant, $4$-genus and $3$-genus of a positive knot are equal.
In this paper, we prove that the Rasmussen invariant, $4$-genus and $3$-genus of an almost positive knot are equal.
Moreover, we determine the Rasmussen invariant of an almost positive knot in terms of its almost positive knot diagram.
As corollaries, we prove that all almost positive knots are not homogeneous, and there is no almost positive knot of $4$-genus one.
Keywords:almost positive knot, four-genus, Rasmussen invariant Categories:57M27, 57M25 |
67. CMB 2014 (vol 57 pp. 264)
On Semisimple Hopf Algebras of Dimension $pq^n$ Let $p,q$ be prime numbers with $p^2\lt q$, $n\in \mathbb{N}$, and $H$ a
semisimple Hopf algebra of dimension $pq^n$ over an algebraically
closed field of characteristic $0$. This paper proves that $H$ must
possess one of the following structures: (1) $H$ is semisolvable;
(2) $H$ is a Radford biproduct $R\# kG$, where $kG$ is the group
algebra of group $G$ of order $p$, and $R$ is a semisimple Yetter--Drinfeld
Hopf algebra in ${}^{kG}_{kG}\mathcal{YD}$ of dimension $q^n$.
Keywords:semisimple Hopf algebra, semisolvability, Radford biproduct, Drinfeld double Category:16W30 |
68. CMB 2014 (vol 57 pp. 765)
Helicoidal Minimal Surfaces in a Finsler Space of Randers Type We consider the Finsler space $(\bar{M}^3, \bar{F})$ obtained by
perturbing the Euclidean metric of $\mathbb{R}^3$ by a rotation. It
is the open region of $\mathbb{R}^3$ bounded by a cylinder with a
Randers metric. Using the Busemann-Hausdorff volume form, we
obtain the differential equation that characterizes the helicoidal
minimal surfaces in $\bar{M}^3$. We prove that the helicoid is a
minimal surface in $\bar{M}^3$, only if the axis of the helicoid
is the axis of the cylinder. Moreover, we prove that, in the
Randers space $(\bar{M}^3, \bar{F})$, the only minimal
surfaces in the Bonnet family, with fixed axis $O\bar{x}^3$, are the catenoids
and the helicoids.
Keywords:minimal surfaces, helicoidal surfaces, Finsler space, Randers space Categories:53A10, 53B40 |
69. CMB 2014 (vol 57 pp. 231)
On the Multiplicities of Characters in Table Algebras In this paper we show that every module of a table algebra
can be considered as a faithful module of some quotient table
algebra.
Also we prove that every faithful module of a table algebra
determines a closed subset which is a cyclic group.
As a main result we give some information about multiplicities
of characters in table algebras.
Keywords:table algebra, faithful module, multiplicity of character Categories:20C99, 16G30 |
70. CMB 2013 (vol 57 pp. 870)
A Short Note on Short Pants It is a theorem of Bers that any closed hyperbolic surface admits a pants decomposition consisting of curves of bounded length where the bound only depends on the topology of the surface. The question of the quantification of the optimal constants has been well studied and the best upper bounds to date are linear in genus, a theorem of Buser and SeppÃ¤lÃ¤. The goal of this note is to give a short proof of a linear upper bound which slightly improve the best known bound.
Keywords:hyperbolic surfaces, geodesics, pants decompositions Categories:30F10, 32G15, 53C22 |
71. CMB 2013 (vol 57 pp. 845)
Factorisation of Two-variable $p$-adic $L$-functions Let $f$ be a modular form which is non-ordinary at $p$. Loeffler has
recently constructed four two-variable $p$-adic $L$-functions
associated to $f$. In the case where $a_p=0$, he showed that, as in
the one-variable case, Pollack's plus and minus splitting applies to
these new objects. In this article, we show that such a splitting can
be generalised to the case where $a_p\ne0$ using Sprung's logarithmic
matrix.
Keywords:modular forms, p-adic L-functions, supersingular primes Categories:11S40, 11S80 |
72. CMB 2013 (vol 57 pp. 463)
Constructive Proof of Carpenter's Theorem We give a constructive proof of Carpenter's Theorem due to Kadison.
Unlike the original proof our approach also yields the
real case of this theorem.
Keywords:diagonals of projections, the Schur-Horn theorem, the Pythagorean theorem, the Carpenter theorem, spectral theory Categories:42C15, 47B15, 46C05 |
73. CMB 2013 (vol 57 pp. 585)
Short Probabilistic Proof of the Brascamp-Lieb and Barthe Theorems We give a short proof of the Brascamp-Lieb theorem, which asserts that
a certain general form of Young's convolution inequality is saturated
by Gaussian functions. The argument is inspired by Borell's stochastic
proof of the PrÃ©kopa-Leindler inequality and applies also to the
reversed Brascamp-Lieb inequality, due to Barthe.
Keywords:functional inequalities, Brownian motion Categories:39B62, 60J65 |
74. CMB 2013 (vol 57 pp. 526)
On $3$-manifolds with Torus or Klein Bottle Category Two A subset $W$ of a closed manifold $M$ is $K$-contractible, where $K$
is a torus or Kleinbottle, if the inclusion $W\rightarrow M$ factors
homotopically through a map to $K$. The image of $\pi_1 (W)$ (for any
base point) is a subgroup of $\pi_1 (M)$ that is isomorphic to a
subgroup of a quotient group of $\pi_1 (K)$. Subsets of $M$ with this
latter property are called $\mathcal{G}_K$-contractible. We obtain a
list of the closed $3$-manifolds that can be covered by two open
$\mathcal{G}_K$-contractible subsets. This is applied to obtain a list
of the possible closed prime $3$-manifolds that can be covered by two
open $K$-contractible subsets.
Keywords:Lusternik--Schnirelmann category, coverings of $3$-manifolds by open $K$-contractible sets Categories:57N10, 55M30, 57M27, 57N16 |
75. CMB 2013 (vol 57 pp. 119)
Splitting Families and Complete Separability We answer a question from Raghavan and SteprÄns
by showing that $\mathfrak{s} = {\mathfrak{s}}_{\omega, \omega}$. Then we use this to construct a completely separable maximal almost disjoint family under $\mathfrak{s} \leq \mathfrak{a}$, partially answering a question of Shelah.
Keywords:maximal almost disjoint family, cardinal invariants Categories:03E05, 03E17, 03E65 |