Expand all Collapse all | Results 51 - 75 of 432 |
51. CMB 2013 (vol 57 pp. 245)
Assouad-Nagata Dimension of Wreath Products of Groups Consider the wreath product $H\wr G$, where $H\ne 1$ is finite and $G$ is finitely generated.
We show that the Assouad-Nagata dimension $\dim_{AN}(H\wr G)$ of $H\wr G$
depends on the growth of $G$ as follows:
\par If the growth of $G$ is not bounded by a linear function, then $\dim_{AN}(H\wr G)=\infty$,
otherwise $\dim_{AN}(H\wr G)=\dim_{AN}(G)\leq 1$.
Keywords:Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups Categories:54F45, 55M10, 54C65 |
52. CMB 2013 (vol 57 pp. 381)
On Complex Explicit Formulae Connected with the MÃ¶bius Function of an Elliptic Curve We study analytic properties function $m(z, E)$, which is defined on the upper half-plane as an integral from the shifted $L$-function of an elliptic curve. We show that $m(z, E)$ analytically continues to a meromorphic function on the whole complex plane and satisfies certain functional equation. Moreover, we give explicit formula for $m(z, E)$ in the strip $|\Im{z}|\lt 2\pi$.
Keywords:L-function, MÃ¶bius function, explicit formulae, elliptic curve Categories:11M36, 11G40 |
53. CMB 2013 (vol 57 pp. 439)
The Fixed Point Locus of the Verschiebung on $\mathcal{M}_X(2, 0)$ for Genus-2 Curves $X$ in Charateristic $2$ |
The Fixed Point Locus of the Verschiebung on $\mathcal{M}_X(2, 0)$ for Genus-2 Curves $X$ in Charateristic $2$ We prove that for every ordinary genus-$2$ curve $X$ over a finite
field $\kappa$ of characteristic $2$ with
$\textrm{Aut}(X/\kappa)=\mathbb{Z}/2\mathbb{Z} \times S_3$, there exist
$\textrm{SL}(2,\kappa[\![s]\!])$-representations of $\pi_1(X)$ such
that the image of $\pi_1(\overline{X})$ is infinite. This result
produces a family of examples similar to Laszlo's counterexample
to de Jong's question regarding the finiteness of the geometric
monodromy of representations of the fundamental group.
Keywords:vector bundle, Frobenius pullback, representation, etale fundamental group Categories:14H60, 14D05, 14G15 |
54. CMB 2013 (vol 57 pp. 310)
Left-orderable Fundamental Group and Dehn Surgery on the Knot $5_2$ We show that the resulting manifold by $r$-surgery on the knot $5_2$, which is
the two-bridge knot corresponding to the rational number $3/7$, has left-orderable
fundamental group if the slope $r$ satisfies $0\le r \le 4$.
Keywords:left-ordering, Dehn surgery Categories:57M25, 06F15 |
55. CMB 2013 (vol 57 pp. 401)
Curvature of $K$-contact Semi-Riemannian Manifolds In this paper we characterize $K$-contact semi-Riemannian manifolds
and Sasakian semi-Riemannian manifolds in terms of
curvature. Moreover, we show that any conformally flat $K$-contact
semi-Riemannian manifold is Sasakian and of constant sectional
curvature $\kappa=\varepsilon$, where $\varepsilon =\pm 1$ denotes
the causal character of the Reeb vector field. Finally, we give some
results about the curvature of a $K$-contact Lorentzian manifold.
Keywords:contact semi-Riemannian structures, $K$-contact structures, conformally flat manifolds, Einstein Lorentzian-Sasaki manifolds Categories:53C50, 53C25, 53B30 |
56. CMB 2013 (vol 57 pp. 506)
On Braided and Ribbon Unitary Fusion Categories We prove that every braiding over a unitary fusion category is
unitary and every unitary braided fusion category admits a unique
unitary ribbon structure.
Keywords:fusion categories, braided categories, modular categories Categories:20F36, 16W30, 18D10 |
57. CMB 2013 (vol 57 pp. 821)
Real Hypersurfaces in Complex Two-Plane Grassmannians with Reeb Parallel Structure Jacobi Operator In this paper we give a characterization of a real hypersurface of
Type~$(A)$ in complex two-plane Grassmannians ${ { {G_2({\mathbb
C}^{m+2})} } }$, which means a
tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in
${G_2({\mathbb C}^{m+2})}$, by
the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.
Keywords:real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator Categories:53C40, 53C15 |
58. CMB 2013 (vol 57 pp. 254)
On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle The unitary extension principle (UEP) by Ron and Shen yields a
sufficient condition for the construction of Parseval wavelet frames with
multiple generators. In this paper we characterize the UEP-type wavelet systems that
can be extended to a Parseval wavelet frame by adding just one UEP-type wavelet
system. We derive a condition that is necessary for the extension of a UEP-type
wavelet system to any Parseval wavelet frame with any number of generators, and
prove that this condition is also sufficient to ensure that an extension
with just two generators is possible.
Keywords:Bessel sequences, frames, extension of wavelet Bessel system to tight frame, wavelet systems, unitary extension principle Categories:42C15, 42C40 |
59. CMB 2013 (vol 57 pp. 449)
ZL-amenability Constants of Finite Groups with Two Character Degrees We calculate the exact amenability constant of the centre of
$\ell^1(G)$ when $G$ is one of the following classes of finite group:
dihedral; extraspecial; or Frobenius with abelian complement and
kernel. This is done using a formula which applies to all finite
groups with two character degrees. In passing, we answer in the
negative a question raised in work of the third author with Azimifard
and Spronk (J. Funct. Anal. 2009).
Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups Categories:43A20, 20C15 |
60. CMB 2013 (vol 57 pp. 141)
Size, Order, and Connected Domination We give a sharp upper bound on the size of a
triangle-free graph of a given order and connected domination. Our
bound, apart from
strengthening an old classical theorem of Mantel and of
TurÃ¡n , improves on a theorem of Sanchis.
Further, as corollaries, we settle a long standing
conjecture of Graffiti on the leaf number and local independence for
triangle-free graphs and answer a question of Griggs, Kleitman and
Shastri on a lower bound of the leaf number in
triangle-free graphs.
Keywords:size, connected domination, local independence number, leaf number Category:05C69 |
61. CMB 2013 (vol 57 pp. 125)
Camina Triples In this paper, we study Camina triples. Camina triples are a
generalization of Camina pairs. Camina pairs were first introduced
in 1978 by A .R. Camina.
Camina's work
was inspired by the study of Frobenius groups. We
show that if $(G,N,M)$ is a Camina triple, then either $G/N$ is a
$p$-group, or $M$ is abelian, or $M$ has a non-trivial nilpotent or
Frobenius quotient.
Keywords:Camina triples, Camina pairs, nilpotent groups, vanishing off subgroup, irreducible characters, solvable groups Category:20D15 |
62. CMB 2013 (vol 57 pp. 364)
How Lipschitz Functions Characterize the Underlying Metric Spaces Let $X, Y$ be metric spaces and $E, F$ be Banach spaces. Suppose that
both $X,Y$ are realcompact, or both $E,F$ are realcompact.
The zero set of a vector-valued function $f$ is denoted by $z(f)$.
A linear bijection $T$ between local or generalized Lipschitz vector-valued function spaces
is said to preserve zero-set containments or nonvanishing functions
if
\[z(f)\subseteq z(g)\quad\Longleftrightarrow\quad z(Tf)\subseteq z(Tg),\]
or
\[z(f) = \emptyset\quad \Longleftrightarrow\quad z(Tf)=\emptyset,\]
respectively.
Every zero-set containment preserver, and every nonvanishing function preserver when
$\dim E =\dim F\lt +\infty$, is a weighted composition operator
$(Tf)(y)=J_y(f(\tau(y)))$.
We show that the map $\tau\colon Y\to X$ is a locally (little) Lipschitz homeomorphism.
Keywords:(generalized, locally, little) Lipschitz functions, zero-set containment preservers, biseparating maps Categories:46E40, 54D60, 46E15 |
63. CMB 2013 (vol 57 pp. 357)
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the
full isometry group $G$ of $\mathbb{R}^n$.
We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and
$\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups
$\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the
right regular representations $L^2(\Gamma_1\backslash G)$ and
$L^2(\Gamma_2\backslash G)$ are unitarily equivalent.
Keywords:representation equivalent, strongly isospectrality, compact flat manifolds Categories:58J53, 22D10 |
64. CMB 2013 (vol 57 pp. 335)
Alexandroff Manifolds and Homogeneous Continua ny homogeneous,
metric $ANR$-continuum is a $V^n_G$-continuum provided $\dim_GX=n\geq
1$ and $\check{H}^n(X;G)\neq 0$, where $G$ is a principal ideal
domain.
This implies that any homogeneous $n$-dimensional metric $ANR$-continuum is a $V^n$-continuum in the sense of Alexandroff.
We also prove that any finite-dimensional homogeneous metric continuum
$X$, satisfying $\check{H}^n(X;G)\neq 0$ for some group $G$ and $n\geq
1$, cannot be separated by
a compactum $K$ with $\check{H}^{n-1}(K;G)=0$ and $\dim_G K\leq
n-1$. This provides a partial answer to a question of
Kallipoliti-Papasoglu
whether any two-dimensional homogeneous Peano continuum cannot be separated by arcs.
Keywords:Cantor manifold, cohomological dimension, cohomology groups, homogeneous compactum, separator, $V^n$-continuum Categories:54F45, 54F15 |
65. CMB 2013 (vol 56 pp. 729)
The Orthonormal Dilation Property for Abstract Parseval Wavelet Frames In this work we introduce a class of discrete groups containing
subgroups of abstract translations and dilations, respectively. A
variety of wavelet systems can appear as $\pi(\Gamma)\psi$, where $\pi$ is
a unitary representation of a wavelet group and $\Gamma$ is the abstract
pseudo-lattice $\Gamma$. We prove a condition in order that a Parseval
frame $\pi(\Gamma)\psi$ can be dilated to an orthonormal basis of the
form $\tau(\Gamma)\Psi$ where $\tau$ is a super-representation of
$\pi$. For a subclass of groups that includes the case where the
translation subgroup is Heisenberg, we show that this condition
always holds, and we cite familiar examples as applications.
Keywords:frame, dilation, wavelet, Baumslag-Solitar group, shearlet Categories:43A65, 42C40, 42C15 |
66. CMB 2013 (vol 56 pp. 449)
The $f$-Chromatic Index of a Graph Whose $f$-Core has Maximum Degree $2$ Let $G$ be a graph. The minimum number of colors needed to color the edges of
$G$ is called the chromatic index of $G$ and is denoted by $\chi'(G)$.
It is well-known that $\Delta(G) \leq \chi'(G) \leq \Delta(G)+1$, for any
graph $G$, where $\Delta(G)$ denotes the maximum degree of $G$. A graph $G$ is said to be
Class $1$ if $\chi'(G) = \Delta(G)$ and Class $2$ if
$\chi'(G) = \Delta(G) + 1$. Also, $G_\Delta$ is the induced subgraph on all vertices of degree $\Delta(G)$.
Let $f:V(G)\rightarrow \mathbb{N}$ be a function.
An $f$-coloring of a graph $G$ is a coloring of the edges
of $E(G)$ such that each color appears at each vertex $v\in V(G)$ at
most $f (v)$ times. The minimum number of colors needed
to $f$-color $G$ is called the $f$-chromatic index of $G$ and
is denoted by $\chi'_{f}(G)$. It was shown that for every graph $G$, $\Delta_{f}(G)\le \chi'_{f}(G)\le \Delta_{f}(G)+1$, where $\Delta_{f}(G)=\max_{v\in V(G)} \big\lceil \frac{d_G(v)}{f(v)}\big\rceil$. A graph $G$ is said to be $f$-Class $1$ if $\chi'_{f}(G)=\Delta_{f}(G)$, and $f$-Class $2$, otherwise. Also, $G_{\Delta_f}$ is the induced subgraph of $G$ on $\{v\in V(G):\,\frac{d_G(v)}{f(v)}=\Delta_{f}(G)\}$.
Hilton and Zhao showed that if $G_{\Delta}$ has maximum degree two and $G$ is Class $2$, then $G$ is critical, $G_{\Delta}$ is a disjoint union of cycles and $\delta(G)=\Delta(G)-1$, where $\delta(G)$ denotes the minimum degree of $G$, respectively. In this paper, we generalize this theorem to $f$-coloring of graphs. Also, we determine the $f$-chromatic index of a connected graph $G$ with $|G_{\Delta_f}|\le 4$.
Keywords:$f$-coloring, $f$-Core, $f$-Class $1$ Categories:05C15, 05C38 |
67. CMB Online first
An Explicit Formula for the Generalized Cyclic Shuffle Map We provide an explicit formula for the generalized cyclic shuffle map for cylindrical modules.
Using this formula we give a combinatorial proof of the generalized
cyclic Eilenberg-Zilber theorem.
Keywords:generalized Cyclic shuffle map, Cylindrical module, Eilenberg-Zilber theorem, Cyclic homology Categories:19D55, 05E45 |
68. CMB 2013 (vol 57 pp. 210)
An Explicit Formula for the Generalized Cyclic Shuffle Map We provide an explicit formula for the generalized cyclic shuffle map for cylindrical modules.
Using this formula we give a combinatorial proof of the generalized
cyclic Eilenberg-Zilber theorem.
Keywords:generalized Cyclic shuffle map, Cylindrical module, Eilenberg-Zilber theorem, Cyclic homology Categories:19D55, 05E45 |
69. CMB 2013 (vol 56 pp. 745)
Dimension Functions of Self-Affine Scaling Sets In this paper, the dimension function of a self-affine generalized scaling set associated with an $n\times n$ integral expansive dilation $A$ is studied. More specifically, we consider the dimension function of an $A$-dilation generalized scaling set $K$ assuming that $K$ is a self-affine tile satisfying $BK = (K+d_1) \cup (K+d_2)$, where $B=A^t$, $A$ is an $n\times n$ integral expansive matrix with $\lvert \det A\rvert=2$, and $d_1,d_2\in\mathbb{R}^n$. We show that the dimension function of $K$ must be constant if either $n=1$ or $2$ or one of the digits is $0$, and that it is bounded by $2\lvert K\rvert$ for any $n$.
Keywords:scaling set, self-affine tile, orthonormal multiwavelet, dimension function Category:42C40 |
70. CMB 2013 (vol 56 pp. 673)
Diophantine Approximation for Certain Algebraic Formal Power Series in Positive Characteristic In this paper, we study rational approximations for certain algebraic power series over a finite field.
We obtain results for irrational elements of strictly positive degree
satisfying an equation of the type
\begin{equation}
\alpha=\displaystyle\frac{A\alpha^{q}+B}{C\alpha^{q}}
\end{equation}
where $(A, B, C)\in
(\mathbb{F}_{q}[X])^{2}\times\mathbb{F}_{q}^{\star}[X]$.
In particular,
we will give, under some conditions on the polynomials $A$, $B$
and $C$, well approximated elements satisfying this equation.
Keywords:diophantine approximation, formal power series, continued fraction Categories:11J61, 11J70 |
71. CMB 2012 (vol 57 pp. 289)
Closure of the Cone of Sums of $2d$-powers in Certain Weighted $\ell_1$-seminorm Topologies In a paper from 1976, Berg, Christensen and Ressel prove that the
closure of the cone of sums of squares $\sum
\mathbb{R}[\underline{X}]^2$ in the polynomial ring
$\mathbb{R}[\underline{X}] := \mathbb{R}[X_1,\dots,X_n]$ in the
topology induced by the $\ell_1$-norm is equal to
$\operatorname{Pos}([-1,1]^n)$, the cone consisting of all polynomials
which are non-negative on the hypercube $[-1,1]^n$. The result is
deduced as a corollary of a general result, established in the same
paper, which is valid for any commutative semigroup.
In later work, Berg and Maserick and Berg, Christensen and Ressel
establish an even more general result, for a commutative semigroup
with involution, for the closure of the cone of sums of squares of
symmetric elements in the weighted $\ell_1$-seminorm topology
associated to an absolute value.
In the present paper we give a new proof of these results which is
based on Jacobi's representation theorem from 2001. At the same time,
we use Jacobi's representation theorem to extend these results from
sums of squares to sums of $2d$-powers, proving, in particular, that
for any integer $d\ge 1$, the closure of the cone of sums of
$2d$-powers $\sum \mathbb{R}[\underline{X}]^{2d}$ in
$\mathbb{R}[\underline{X}]$ in the topology induced by the
$\ell_1$-norm is equal to $\operatorname{Pos}([-1,1]^n)$.
Keywords:positive definite, moments, sums of squares, involutive semigroups Categories:43A35, 44A60, 13J25 |
72. CMB 2012 (vol 56 pp. 881)
Free Groups Generated by Two Heisenberg Translations In this paper, we will discuss the groups generated by two
Heisenberg translations of $\mathbf{PU}(2,1)$ and determine when they are free.
Keywords:free group, Heisenberg group, complex triangle group Categories:30F40, 22E40, 20H10 |
73. CMB 2012 (vol 57 pp. 326)
On Zero-divisors in Group Rings of Groups with Torsion Nontrivial pairs of zero-divisors in group rings are
introduced and discussed. A problem on the existence of nontrivial
pairs of zero-divisors in group rings of free Burnside groups of odd
exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of
zero-divisors are also found in group rings of free products of groups
with torsion.
Keywords:Burnside groups, free products of groups, group rings, zero-divisors Categories:20C07, 20E06, 20F05, , 20F50 |
74. CMB 2012 (vol 57 pp. 209)
Erratum to the Paper "A Lower Bound for the Length of Closed Geodesics on a Finsler Manifold" We correct two clerical errors made in the paper "A Lower Bound for
the Length of Closed Geodesics on a Finsler Manifold".
Keywords:Finsler manifold, closed geodesic, injective radius Categories:53B40, 53C22 |
75. CMB 2012 (vol 56 pp. 570)
Conjugacy Classes and Binary Quadratic Forms for the Hecke Groups In this paper we give a lower bound
with respect to block length
for the trace of non-elliptic conjugacy classes
of the Hecke groups.
One consequence of our bound
is that there are finitely many
conjugacy classes of a given trace in any Hecke group.
We show that another consequence of our bound
is that
class numbers are finite for
related hyperbolic \( \mathbb{Z}[\lambda] \)-binary quadratic forms.
We give canonical class representatives
and calculate class numbers
for some classes of hyperbolic \( \mathbb{Z}[\lambda] \)-binary quadratic forms.
Keywords:Hecke groups, conjugacy class, quadratic forms Categories:11F06, 11E16, 11A55 |