51. CMB 2016 (vol 59 pp. 461)
 Ara, Pere; O'Meara, Kevin C.

The Nilpotent Regular Element Problem
We use George Bergman's recent normal form for universally adjoining
an inner inverse to show that, for general rings, a nilpotent
regular element $x$ need not be unitregular.
This contrasts sharply with the situation for nilpotent regular
elements in exchange rings (a large class of rings), and for
general rings when all powers of the nilpotent element $x$ are
regular.
Keywords:nilpotent element, von Neumann regular element, unitregular, Bergman's normal form Categories:16E50, 16U99, 16S10, 16S15 

52. CMB Online first
 Khavinson, Dmitry; Lundberg, Erik; Render, Hermann

The Dirichlet problem for the slab with entire data and a difference equation for harmonic functions
It is shown that the Dirichlet problem for the slab $(a,b) \times
\mathbb{R}^{d}$ with entire boundary data has an entire solution. The proof
is based
on a generalized Schwarz reflection principle. Moreover, it is
shown that
for a given entire harmonic function $g$
the inhomogeneous difference equation $h
( t+1,y) h (t,y) =g ( t,y)$
has an entire harmonic solution $h$.
Keywords:reflection principle, entire harmonic function, analytic continuation Categories:31B20, 31B05 

53. CMB 2016 (vol 59 pp. 575)
 Li, Jifu; Hu, Zhiguang; Deng, Shaoqiang

Cohomogeneity One Randers Metrics
An action of a Lie group $G$ on a smooth manifold $M$ is called
cohomogeneity one if the orbit space $M/G$ is of dimension $1$.
A Finsler metric $F$ on $M$ is called invariant if $F$ is
invariant under the action of $G$. In this paper,
we study invariant
Randers metrics on cohomogeneity one manifolds. We first give a
sufficient and necessary condition for the existence of invariant
Randers metrics on cohomogeneity one manifolds. Then we obtain
some results on invariant Killing vector fields on the
cohomogeneity one manifolds and use that to deduce some
sufficient and necessary condition for a cohomogeneity one
Randers metric to be Einstein.
Keywords:cohomogeneity one actions, normal geodesics, invariant vector fields, Randers metrics Categories:53C30, 53C60 

54. CMB 2016 (vol 59 pp. 624)
 Otsubo, Noriyuki

Homology of the Fermat Tower and Universal Measures for Jacobi Sums
We give a precise description of the homology group of the Fermat
curve as a cyclic module over a group ring.
As an application, we prove the freeness of the profinite homology
of the Fermat tower.
This allows us to define measures, an equivalent of Anderson's
adelic beta functions,
in a similar manner to Ihara's definition of $\ell$adic universal
power series for Jacobi sums.
We give a simple proof of the interpolation property using a
motivic decomposition of the Fermat curve.
Keywords:Fermat curves, IharaAnderson theory, Jacobi sums Categories:11S80, 11G15, 11R18 

55. CMB 2016 (vol 59 pp. 748)
 Dolžan, David

The Metric Dimension of the Total Graph of a Finite Commutative Ring
We study the total graph of a finite commutative ring. We calculate
its metric dimension in the case when the Jacobson radical of
the ring is nontrivial and we examine the metric dimension of
the total graph of a product of at most two fields, obtaining
either exact values in some cases or bounds in other, depending
on the number of elements in the respective fields.
Keywords:total graph, finite ring, metric dimension Categories:13M99, 05E40 

56. CMB 2016 (vol 59 pp. 417)
 Song, Hongxue; Chen, Caisheng; Yan, Qinglun

Existence of Multiple Solutions for a $p$Laplacian System in $\textbf{R}^{N}$ with Signchanging Weight Functions
In this paper, we consider the quasilinear elliptic
problem
\[
\left\{
\begin{aligned}
&
M
\left(\int_{\mathbb{R}^{N}}x^{ap}\nabla u^{p}dx
\right){\rm
div}
\left(x^{ap}\nabla u^{p2}\nabla u
\right)
\\
&
\qquad=\frac{\alpha}{\alpha+\beta}H(x)u^{\alpha2}uv^{\beta}+\lambda
h_{1}(x)u^{q2}u,
\\
&
M
\left(\int_{\mathbb{R}^{N}}x^{ap}\nabla v^{p}dx
\right){\rm
div}
\left(x^{ap}\nabla v^{p2}\nabla v
\right)
\\
&
\qquad=\frac{\beta}{\alpha+\beta}H(x)v^{\beta2}vu^{\alpha}+\mu
h_{2}(x)v^{q2}v,
\\
&u(x)\gt 0,\quad v(x)\gt 0, \quad x\in \mathbb{R}^{N}
\end{aligned}
\right.
\]
where $\lambda, \mu\gt 0$, $1\lt p\lt N$,
$1\lt q\lt p\lt p(\tau+1)\lt \alpha+\beta\lt p^{*}=\frac{Np}{Np}$, $0\leq
a\lt \frac{Np}{p}$, $a\leq b\lt a+1$, $d=a+1b\gt 0$, $M(s)=k+l s^{\tau}$,
$k\gt 0$, $l, \tau\geq0$ and the weight $H(x), h_{1}(x), h_{2}(x)$
are
continuous functions which change sign in $\mathbb{R}^{N}$. We
will prove that the problem has at least two positive solutions
by
using the Nehari manifold and the fibering maps associated with
the Euler functional for this problem.
Keywords:Nehari manifold, quasilinear elliptic system, $p$Laplacian operator, concave and convex nonlinearities Category:35J66 

57. CMB 2016 (vol 59 pp. 693)
 Chen, ChungChuan

Recurrence of Cosine Operator Functions on Groups
In this note, we study the recurrence and topologically multiple
recurrence of a sequence of operators on Banach spaces.
In particular, we give a sufficient and necessary condition for
a cosine operator function,
induced by a sequence of operators on the Lebesgue space of a
locally compact group, to be topologically multiply recurrent.
Keywords:topologically multiple recurrence, recurrence, topological transitivity, hypercyclicity, cosine operator function Categories:47A16, 54B20, 43A15 

58. CMB 2016 (vol 59 pp. 234)
 Beardon, Alan F.

Nondiscrete Frieze Groups
The classification of Euclidean frieze groups into seven conjugacy
classes is well known, and many articles on recreational mathematics
contain frieze patterns that illustrate these classes. However,
it is
only possible to draw these patterns because the subgroup of
translations that leave the pattern invariant is (by definition)
cyclic, and hence discrete. In this paper we classify the conjugacy
classes of frieze groups that contain a nondiscrete subgroup of
translations, and clearly these groups cannot be represented
pictorially in any practical way. In addition, this discussion
sheds
light on why there are only seven conjugacy classes in the classical
case.
Keywords:frieze groups, isometry groups Categories:51M04, 51N30, 20E45 

59. CMB 2016 (vol 59 pp. 326)
60. CMB 2016 (vol 59 pp. 508)
 De Nicola, Antonio; Yudin, Ivan

Generalized Goldberg Formula
In this paper we prove a useful formula for the graded commutator
of the Hodge
codifferential with the left wedge multiplication by a fixed
$p$form acting on
the de Rham algebra of a Riemannian manifold. Our formula generalizes
a formula
stated by Samuel I. Goldberg for the case of 1forms. As first
examples of
application we obtain new identities on locally conformally KÃ¤hler
manifolds
and quasiSasakian manifolds. Moreover, we prove that under suitable
conditions
a certain subalgebra of differential forms in a compact manifold
is quasiisomorphic as a CDGA to the full de Rham algebra.
Keywords:graded commutator, Hodge codifferential, Hodge laplacian, de Rham cohomology, locally conformal Kaehler manifold, quasiSasakian manifold Categories:53C25, 53D35 

61. CMB 2016 (vol 59 pp. 553)
 Kachmar, Ayman

A New Formula for the Energy of Bulk Superconductivity
The energy of a type II superconductor submitted to an external
magnetic field of intensity close to the second critical field
is given by the celebrated Abrikosov energy. If the external
magnetic field is comparable to and below the second critical
field, the energy is given by a reference function obtained as
a special (thermodynamic) limit of a nonlinear energy. In this
note, we give a new formula for this reference energy. In particular,
we obtain it as a special limit of a linear energy defined
over configurations normalized in the $L^4$norm.
Keywords:GinzburgLandau functional Categories:35B40, 35P15, 35Q56 

62. CMB 2016 (vol 59 pp. 542)
 Jiang, Yongxin; Wang, Wei; Feng, Zhaosheng

Spatial Homogenization of Stochastic Wave Equation with Large Interaction
A dynamical approximation of a stochastic wave
equation with large interaction is derived.
A random invariant manifold is discussed. By a key linear transformation,
the random invariant manifold is shown to be close to the random
invariant manifold
of a secondorder stochastic ordinary differential equation.
Keywords:stochastic wave equation, homogeneous system, approximation, random invariant manifold, Neumann boundary condition Categories:60F10, 60H15, 35Q55 

63. CMB 2016 (vol 59 pp. 279)
64. CMB 2016 (vol 59 pp. 346)
 Krantz, Steven

On a Theorem of Bers, with Applications to the Study of Automorphism Groups of Domains
We study and generalize a classical theorem of L. Bers that classifies
domains up to biholomorphic equivalence in terms of the algebras
of
holomorphic functions on those domains. Then we develop applications
of these results to the study of domains with noncompact automorphism
group.
Keywords:Bers's theorem, algebras of holomorphic functions, noncompact automorphism group, biholomorphic equivalence Categories:32A38, 30H50, 32A10, 32M99 

65. CMB 2016 (vol 59 pp. 403)
 Zargar, Majid Rahro; Zakeri, Hossein

On Flat and Gorenstein Flat Dimensions of Local Cohomology Modules
Let $\mathfrak{a}$ be an ideal of a Noetherian local
ring $R$ and let $C$ be a semidualizing $R$module. For an $R$module
$X$, we denote any of the quantities $\mathfrak{d}_R X$,
$\operatorname{\mathsf{Gfd}}_R X$ and
$\operatorname{\mathsf{G_Cfd}}_RX$ by $\operatorname{\mathsf{T}}(X)$. Let $M$ be an $R$module such that
$\operatorname{H}_{\mathfrak{a}}^i(M)=0$
for all $i\neq n$. It is proved that if $\operatorname{\mathsf{T}}(X)\lt \infty$, then
$\operatorname{\mathsf{T}}(\operatorname{H}_{\mathfrak{a}}^n(M))\leq\operatorname{\mathsf{T}}(M)+n$ and the equality holds whenever
$M$ is finitely generated. With the aid of these results, among
other things, we characterize CohenMacaulay modules, dualizing
modules and Gorenstein rings.
Keywords:flat dimension, Gorenstein injective dimension, Gorenstein flat dimension, local cohomology, relative CohenMacaulay module, semidualizing module Categories:13D05, 13D45, 18G20 

66. CMB 2016 (vol 59 pp. 225)
 Atıcı, Ferhan M.; Yaldız, Hatice

Convex Functions on Discrete Time Domains
In this paper, we introduce the definition of a convex real
valued function $f$ defined on the set of integers, ${\mathbb{Z}}$. We
prove that $f$ is convex on ${\mathbb{Z}}$ if and only if $\Delta^{2}f
\geq 0$ on ${\mathbb{Z}}$. As a first application of this new concept,
we state and prove discrete HermiteHadamard inequality using
the basics of discrete calculus (i.e. the calculus on ${\mathbb{Z}}$).
Second, we state and prove the discrete fractional HermiteHadamard
inequality using the basics of discrete fractional calculus.
We close the paper by defining the convexity of a real valued
function on any time scale.
Keywords:discrete calculus, discrete fractional calculus, convex functions, discrete HermiteHadamard inequality Categories:26B25, 26A33, 39A12, 39A70, 26E70, 26D07, 26D10, 26D15 

67. CMB 2016 (vol 59 pp. 392)
68. CMB 2016 (vol 59 pp. 311)
 Ilten, Nathan; Teitler, Zach

Product Ranks of the $3\times 3$ Determinant and Permanent
We show that the product rank of the $3 \times 3$ determinant
$\det_3$ is $5$,
and the product rank of the $3 \times 3$ permanent
$\operatorname{perm}_3$
is $4$.
As a corollary, we obtain that the tensor rank of $\det_3$ is
$5$ and the tensor rank of $\operatorname{perm}_3$ is $4$.
We show moreover that the border product rank of $\operatorname{perm}_n$ is
larger than $n$ for any $n\geq 3$.
Keywords:product rank, tensor rank, determinant, permanent, Fano schemes Categories:15A21, 15A69, 14M12, 14N15 

69. CMB 2016 (vol 59 pp. 363)
 Li, Dan; Ma, Wanbiao

Dynamical Analysis of a StageStructured Model for Lyme Disease with Two Delays
In this paper, a
nonlinear stagestructured model for Lyme disease is considered.
The model is a system of differential equations with two time
delays. The basic reproductive rate, $R_0(\tau_1,\tau_2)$, is
derived. If $R_0(\tau_1,\tau_2)\lt 1$, then the boundary equilibrium
is globally asymptotically stable. If $R_0(\tau_1,\tau_2)\gt 1$,
then there exists
a unique positive equilibrium whose local asymptotical stability
and the existence of
Hopf bifurcations are established by analyzing the distribution
of the characteristic values.
An explicit algorithm for determining the direction of Hopf bifurcations
and the
stability of the bifurcating periodic solutions is derived by
using the normal form and
the center manifold theory. Some numerical simulations are performed
to confirm the correctness
of theoretical analysis. At last, some conclusions are given.
Keywords:Lyme disease, stagestructure, time delay, Lyapunov functional stability Hopf bifurcation. Category:34D20 

70. CMB 2015 (vol 59 pp. 73)
 Gasiński, Leszek; Papageorgiou, Nikolaos S.

Positive Solutions for the Generalized Nonlinear Logistic Equations
We consider a nonlinear parametric elliptic equation driven
by a nonhomogeneous differential
operator with a logistic reaction of the superdiffusive type.
Using variational methods coupled with suitable truncation
and comparison techniques,
we prove a bifurcation type result describing the set of positive
solutions
as the parameter varies.
Keywords:positive solution, bifurcation type result, strong comparison principle, nonlinear regularity, nonlinear maximum principle Categories:35J25, 35J92 

71. CMB 2015 (vol 59 pp. 170)
 MartínezPedroza, Eduardo

A Note on Fine Graphs and Homological Isoperimetric Inequalities
In the framework of homological characterizations of relative
hyperbolicity, Groves and Manning posed the question of whether
a simply connected $2$complex $X$ with a linear homological
isoperimetric inequality, a bound on the length of attaching
maps of $2$cells and finitely many $2$cells adjacent to any
edge must have a fine $1$skeleton. We provide a positive answer
to this question. We revisit a homological characterization
of relative hyperbolicity, and show that a group $G$ is hyperbolic
relative to a collection of subgroups $\mathcal P$ if and only if
$G$ acts cocompactly with finite edge stabilizers on an connected
$2$dimensional cell complex with a linear homological isoperimetric
inequality and $\mathcal P$ is a collection of representatives of
conjugacy classes of vertex stabilizers.
Keywords:isoperimetric functions, Dehn functions, hyperbolic groups Categories:20F67, 05C10, 20J05, 57M60 

72. CMB 2015 (vol 59 pp. 435)
 Yao, Hongliang

On Extensions of Stably Finite C*algebras (II)
For any $C^*$algebra $A$ with an approximate
unit of projections, there is a smallest ideal $I$ of $A$ such
that the quotient $A/I$ is stably finite.
In this paper, a sufficient and necessary condition is obtained
for an ideal of a $C^*$algebra with real rank zero is this smallest
ideal by $K$theory.
Keywords:extension, stably finite C*algebra, index map Categories:46L05, 46L80 

73. CMB 2015 (vol 59 pp. 197)
 Rajaee, Saeed

Quasicopure Submodules
All rings are commutative with identity and all modules are unital.
In this paper we introduce the concept of quasicopure submodule
of
a multiplication $R$module $M$ and will give some results of
them.
We give some properties of tensor product of finitely generated
faithful multiplication modules.
Keywords:multiplication module, arithmetical ring, copure submodule, radical of submodules Categories:13A15, 13C05, 13C13, , 13C99 

74. CMB 2015 (vol 59 pp. 123)
 Jensen, Gerd; Pommerenke, Christian

Discrete Spacetime and Lorentz Transformations
Alfred Schild has established conditions
that Lorentz transformations map worldvectors $(ct,x,y,z)$ with
integer coordinates onto vectors of the same kind. The problem
was dealt with in the context of tensor and spinor calculus.
Due to Schild's numbertheoretic arguments, the subject is also
interesting when isolated from its physical background.
The paper of Schild is not easy to understand. Therefore we first
present a streamlined version of his proof which is based on
the use of null vectors. Then we present a purely algebraic proof
that is somewhat shorter. Both proofs rely on the properties
of Gaussian integers.
Keywords:Lorentz transformation, integer lattice, Gaussian integers Categories:22E43, 20H99, 83A05 

75. CMB 2015 (vol 58 pp. 818)
 Llibre, Jaume; Zhang, Xiang

On the Limit Cycles of Linear Differential Systems with Homogeneous Nonlinearities
We consider the class of polynomial differential systems of the
form
$\dot x= \lambda xy+P_n(x,y)$, $\dot y=x+\lambda y+ Q_n(x,y),$ where
$P_n$ and $Q_n$ are homogeneous polynomials of degree $n$. For
this
class of differential systems we summarize the known results
for the
existence of limit cycles, and we provide new results for their
nonexistence and existence.
Keywords:polynomial differential system, limit cycles, differential equations on the cylinder Categories:34C35, 34D30 
