location:  Publications → journals
Search results

Search: All articles in the CMB digital archive with keyword f

 Expand all        Collapse all Results 26 - 50 of 489

26. CMB 2015 (vol 58 pp. 858)

Williams, Kenneth S.
 Ternary Quadratic Forms and Eta Quotients Let $\eta(z)$ $(z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0)$ denote the Dedekind eta function. We use a recent product-to-sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly 10 eta quotients $f(z):=\eta^{a(m_1)}(m_1 z)\cdots \eta^{{a(m_r)}}(m_r z)=\sum_{n=1}^{\infty}c(n)e^{2\pi i nz},\quad z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0,$ such that the Fourier coefficients $c(n)$ vanish for all positive integers $n$ in each of infinitely many non-overlapping arithmetic progressions. For example, it is shown that for $f(z)=\eta^4(z)\eta^{9}(4z)\eta^{-2}(8z)$ we have $c(n)=0$ for all $n$ in each of the arithmetic progressions $\{16k+14\}_{k \geq 0}$, $\{64k+56\}_{k \geq 0}$, $\{256k+224\}_{k \geq 0}$, $\{1024k+896\}_{k \geq 0}$, $\ldots$. Keywords:Dedekind eta function, eta quotient, ternary quadratic forms, vanishing of Fourier coefficients, product-to-sum formulaCategories:11F20, 11E20, 11E25

27. CMB Online first

 On classes $Q_p^\#$ for hyperbolic Riemann surfaces The $Q_p$ spaces of holomorphic functions on the disk, hyperbolic Riemann surfaces or complex unit ball have been studied deeply. Meanwhile, there are a lot of papers devoted to the $Q^\#_p$ classes of meromorphic functions on the disk or hyperbolic Riemann surfaces. In this paper, we prove the nesting property (inclusion relations) of $Q^\#_p$ classes on hyperbolic Riemann surfaces. The same property for $Q_p$ spaces was also established systematically and precisely in earlier work by the authors of this paper. Keywords:$Q_p^\#$ class, hyperbolic Riemann surface, spherical Dirichlet function,Categories:30D50, 30F35

28. CMB Online first

Hu, Pei-Chu; Li, Bao Qin
 A simple proof and strengthening of a uniqueness theorem for L-functions We give a simple proof and strengthening of a uniqueness theorem for functions in the extended Selberg class. Keywords:meromorphic function, Dirichlet series, L-function, zero, order, uniquenessCategories:30B50, 11M41

29. CMB Online first

Donovan, Diane M.; Griggs, Terry S.; McCourt, Thomas A.; Opršal, Jakub; Stanovský, David
 Distributive and anti-distributive Mendelsohn triple systems We prove that the existence spectrum of Mendelsohn triple systems whose associated quasigroups satisfy distributivity corresponds to the Loeschian numbers, and provide some enumeration results. We do this by considering a description of the quasigroups in terms of commutative Moufang loops. In addition we provide constructions of Mendelsohn quasigroups that fail distributivity for as many combinations of elements as possible. These systems are analogues of Hall triple systems and anti-mitre Steiner triple systems respectively. Keywords:Mendelsohn triple system, quasigroup, distributive, Moufang loop, Loeschian numbersCategories:20N05, 05B07

30. CMB 2015 (vol 58 pp. 664)

Vahidi, Alireza
 Betti Numbers and Flat Dimensions of Local Cohomology Modules Assume that $R$ is a commutative Noetherian ring with non-zero identity, $\mathfrak{a}$ is an ideal of $R$ and $X$ is an $R$--module. In this paper, we first study the finiteness of Betti numbers of local cohomology modules $\operatorname{H}_\mathfrak{a}^i(X)$. Then we give some inequalities between the Betti numbers of $X$ and those of its local cohomology modules. Finally, we present many upper bounds for the flat dimension of $X$ in terms of the flat dimensions of its local cohomology modules and an upper bound for the flat dimension of $\operatorname{H}_\mathfrak{a}^i(X)$ in terms of the flat dimensions of the modules $\operatorname{H}_\mathfrak{a}^j(X)$, $j\not= i$, and that of $X$. Keywords:Betti numbers, flat dimensions, local cohomology modulesCategories:13D45, 13D05

31. CMB 2015 (vol 58 pp. 538)

Li, Lili; Chen, Guiyun
 Minimal Non Self Dual Groups A group $G$ is self dual if every subgroup of $G$ is isomorphic to a quotient of $G$ and every quotient of $G$ is isomorphic to a subgroup of $G$. It is minimal non-self dual if every proper subgroup of $G$ is self dual but $G$ is not self dual. In this paper, the structure of minimal non-self dual groups is determined. Keywords:minimal non-self dual group, finite group, metacyclic group, metabelian groupCategory:20D15

32. CMB 2015 (vol 58 pp. 449)

Boynton, Jason Greene; Coykendall, Jim
 On the Graph of Divisibility of an Integral Domain It is well known that the factorization properties of a domain are reflected in the structure of its group of divisibility. The main theme of this paper is to introduce a topological/graph-theoretic point of view to the current understanding of factorization in integral domains. We also show that connectedness properties in the graph and topological space give rise to a generalization of atomicity. Keywords:atomic, factorization, divisibilityCategories:13F15, 13A05

33. CMB 2015 (vol 58 pp. 548)

 Higher Moments of Fourier Coefficients of Cusp Forms Let $S_{k}(\Gamma)$ be the space of holomorphic cusp forms of even integral weight $k$ for the full modular group $SL(2, \mathbb{Z})$. Let $\lambda_f(n)$, $\lambda_g(n)$, $\lambda_h(n)$ be the $n$th normalized Fourier coefficients of three distinct holomorphic primitive cusp forms $f(z) \in S_{k_1}(\Gamma), g(z) \in S_{k_2}(\Gamma), h(z) \in S_{k_3}(\Gamma)$ respectively. In this paper we study the cancellations of sums related to arithmetic functions, such as $\lambda_f(n)^4\lambda_g(n)^2$, $\lambda_g(n)^6$, $\lambda_g(n)^2\lambda_h(n)^4$, and $\lambda_g(n^3)^2$ twisted by the arithmetic function $\lambda_f(n)$. Keywords:Fourier coefficients of automorphic forms, Dirichlet series, triple product $L$-function, Perron's formulaCategories:11F30, 11F66

34. CMB Online first

Alfuraidan, Monther Rashed
 The Contraction Principle for Multivalued Mappings on a Modular Metric Space with a Graph We study the existence of fixed points for contraction multivalued mappings in modular metric spaces endowed with a graph. The notion of a modular metric on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces like Orlicz spaces, were recently introduced. This paper can be seen as a generalization of Nadler's and Edelstein's fixed point theorems to modular metric spaces endowed with a graph. Keywords:fixed point theory, modular metric spaces, multivalued contraction mapping, connected digraph.Categories:47H09, 46B20, 47H10, 47E10

35. CMB 2015 (vol 58 pp. 651)

Tang, Xianhua
 Ground State Solutions of Nehari-Pankov Type for a Superlinear Hamiltonian Elliptic System on ${\mathbb{R}}^{N}$ This paper is concerned with the following elliptic system of Hamiltonian type $\left\{ \begin{array}{ll} -\triangle u+V(x)u=W_{v}(x, u, v), \ \ \ \ x\in {\mathbb{R}}^{N}, \\ -\triangle v+V(x)v=W_{u}(x, u, v), \ \ \ \ x\in {\mathbb{R}}^{N}, \\ u, v\in H^{1}({\mathbb{R}}^{N}), \end{array} \right.$ where the potential $V$ is periodic and $0$ lies in a gap of the spectrum of $-\Delta+V$, $W(x, s, t)$ is periodic in $x$ and superlinear in $s$ and $t$ at infinity. We develop a direct approach to find ground state solutions of Nehari-Pankov type for the above system. Especially, our method is applicable for the case when $W(x, u, v)=\sum_{i=1}^{k}\int_{0}^{|\alpha_iu+\beta_iv|}g_i(x, t)t\mathrm{d}t +\sum_{j=1}^{l}\int_{0}^{\sqrt{u^2+2b_juv+a_jv^2}}h_j(x, t)t\mathrm{d}t,$ where $\alpha_i, \beta_i, a_j, b_j\in \mathbb{R}$ with $\alpha_i^2+\beta_i^2\ne 0$ and $a_j\gt b_j^2$, $g_i(x, t)$ and $h_j(x, t)$ are nondecreasing in $t\in \mathbb{R}^{+}$ for every $x\in \mathbb{R}^N$ and $g_i(x, 0)=h_j(x, 0)=0$. Keywords:Hamiltonian elliptic system, superlinear, ground state solutions of Nehari-Pankov type, strongly indefinite functionalsCategories:35J50, 35J55

36. CMB 2015 (vol 58 pp. 730)

Efrat, Ido; Matzri, Eliyahu
 Vanishing of Massey Products and Brauer Groups Let $p$ be a prime number and $F$ a field containing a root of unity of order $p$. We relate recent results on vanishing of triple Massey products in the mod-$p$ Galois cohomology of $F$, due to Hopkins, Wickelgren, MinÃ¡Ä, and TÃ¢n, to classical results in the theory of central simple algebras. For global fields, we prove a stronger form of the vanishing property. Keywords:Galois cohomology, Brauer groups, triple Massey products, global fieldsCategories:16K50, 11R34, 12G05, 12E30

37. CMB 2015 (vol 58 pp. 580)

 A Specialisation of the Bump-Friedberg $L$-function We study the restriction of the Bump-Friedberg integrals to affine lines $\{(s+\alpha,2s),s\in\mathbb{C}\}$. It has a simple theory, very close to that of the Asai $L$-function. It is an integral representation of the product $L(s+\alpha,\pi)L(2s,\Lambda^2,\pi)$ which we denote by $L^{lin}(s,\pi,\alpha)$ for this abstract, when $\pi$ is a cuspidal automorphic representation of $GL(k,\mathbb{A})$ for $\mathbb{A}$ the adeles of a number field. When $k$ is even, we show that for a cuspidal automorphic representation $\pi$, the partial $L$-function $L^{lin,S}(s,\pi,\alpha)$ has a pole at $1/2$, if and only if $\pi$ admits a (twisted) global period, this gives a more direct proof of a theorem of Jacquet and Friedberg, asserting that $\pi$ has a twisted global period if and only if $L(\alpha+1/2,\pi)\neq 0$ and $L(1,\Lambda^2,\pi)=\infty$. When $k$ is odd, the partial $L$-function is holmorphic in a neighbourhood of $Re(s)\geq 1/2$ when $Re(\alpha)$ is $\geq 0$. Keywords:automorphic L functionsCategories:11F70, 11F66

38. CMB 2015 (vol 58 pp. 530)

Li, Benling; Shen, Zhongmin
 Ricci Curvature Tensor and Non-Riemannian Quantities There are several notions of Ricci curvature tensor in Finsler geometry and spray geometry. One of them is defined by the Hessian of the well-known Ricci curvature. In this paper we will introduce a new notion of Ricci curvature tensor and discuss its relationship with the Ricci curvature and some non-Riemannian quantities. By this Ricci curvature tensor, we shall have a better understanding on these non-Riemannian quantities. Keywords:Finsler metrics, sprays, Ricci curvature, non-Riemanian quantityCategories:53B40, 53C60

39. CMB 2015 (vol 58 pp. 757)

Han, Yanchang
 Embedding Theorem for Inhomogeneous Besov and Triebel-Lizorkin Spaces on RD-spaces In this article we prove the embedding theorem for inhomogeneous Besov and Triebel-Lizorkin spaces on RD-spaces. The crucial idea is to use the geometric density condition on the measure. Keywords:spaces of homogeneous type, test function space, distributions, CalderÃ³n reproducing formula, Besov and Triebel-Lizorkin spaces, embeddingCategories:42B25, 46F05, 46E35

40. CMB 2015 (vol 58 pp. 471)

Demirbas, Seckin
 Almost Sure Global Well-posedness for the Fractional Cubic SchrÃ¶dinger Equation on Torus In a previous paper, we proved that $1$-d periodic fractional SchrÃ¶dinger equation with cubic nonlinearity is locally well-posed in $H^s$ for $s\gt \frac{1-\alpha}{2}$ and globally well-posed for $s\gt \frac{10\alpha-1}{12}$. In this paper we define an invariant probability measure $\mu$ on $H^s$ for $s\lt \alpha-\frac{1}{2}$, so that for any $\epsilon\gt 0$ there is a set $\Omega\subset H^s$ such that $\mu(\Omega^c)\lt \epsilon$ and the equation is globally well-posed for initial data in $\Omega$. We see that this fills the gap between the local well-posedness and the global well-posedness range in almost sure sense for $\frac{1-\alpha}{2}\lt \alpha-\frac{1}{2}$, i.e. $\alpha\gt \frac{2}{3}$ in almost sure sense. Keywords:NLS, fractional Schrodinger equation, almost sure global wellposednessCategory:35Q55

41. CMB 2015 (vol 58 pp. 459)

Casini, Emanuele; Miglierina, Enrico; Piasecki, Lukasz
 Hyperplanes in the Space of Convergent Sequences and Preduals of $\ell_1$ The main aim of the present paper is to investigate various structural properties of hyperplanes of $c$, the Banach space of the convergent sequences. In particular, we give an explicit formula for the projection constants and we prove that an hyperplane of $c$ is isometric to the whole space if and only if it is $1$-complemented. Moreover, we obtain the classification of those hyperplanes for which their duals are isometric to $\ell_{1}$ and we give a complete description of the preduals of $\ell_{1}$ under the assumption that the standard basis of $\ell_{1}$ is weak$^{*}$-convergent. Keywords:space of convergent sequences, projection, $\ell_1$-predual, hyperplaneCategories:46B45, 46B04

42. CMB 2015 (vol 58 pp. 713)

Brendle, Simon; Chodosh, Otis
 On the Maximum Curvature of Closed Curves in Negatively Curved Manifolds Motivated by Almgren's work on the isoperimetric inequality, we prove a sharp inequality relating the length and maximum curvature of a closed curve in a complete, simply connected manifold of sectional curvature at most $-1$. Moreover, if equality holds, then the norm of the geodesic curvature is constant and the torsion vanishes. The proof involves an application of the maximum principle to a function defined on pairs of points. Keywords:manifold, curvatureCategory:53C20

43. CMB 2015 (vol 58 pp. 486)

Duc, Dinh Thanh; Nhan, Nguyen Du Vi; Xuan, Nguyen Tong
 Inequalities for Partial Derivatives and their Applications We present various weighted integral inequalities for partial derivatives acting on products and compositions of functions which are applied to establish some new Opial-type inequalities involving functions of several independent variables. We also demonstrate the usefulness of our results in the field of partial differential equations. Keywords:inequality for integral, Opial-type inequality, HÃ¶lder's inequality, partial differential operator, partial differential equationCategories:26D10, 35A23

44. CMB Online first

Song, Hongxue; Chen, Caisheng; Yan, Qinglun
 Existence of multiple solutions for a $p$-Laplacian system in $\textbf{R}^{N}$ with sign-changing weight functions In this paper, we consider the quasi-linear elliptic problem \left\{ \begin{aligned} & -M \left(\int_{\mathbb{R}^{N}}|x|^{-ap}|\nabla u|^{p}dx \right){\rm div} \left(|x|^{-ap}|\nabla u|^{p-2}\nabla u \right) \\ & \qquad=\frac{\alpha}{\alpha+\beta}H(x)|u|^{\alpha-2}u|v|^{\beta}+\lambda h_{1}(x)|u|^{q-2}u, \\ & -M \left(\int_{\mathbb{R}^{N}}|x|^{-ap}|\nabla v|^{p}dx \right){\rm div} \left(|x|^{-ap}|\nabla v|^{p-2}\nabla v \right) \\ & \qquad=\frac{\beta}{\alpha+\beta}H(x)|v|^{\beta-2}v|u|^{\alpha}+\mu h_{2}(x)|v|^{q-2}v, \\ &u(x)\gt 0,\quad v(x)\gt 0, \quad x\in \mathbb{R}^{N} \end{aligned} \right. where $\lambda, \mu\gt 0$, $1\lt p\lt N$, $1\lt q\lt p\lt p(\tau+1)\lt \alpha+\beta\lt p^{*}=\frac{Np}{N-p}$, $0\leq a\lt \frac{N-p}{p}$, $a\leq b\lt a+1$, $d=a+1-b\gt 0$, $M(s)=k+l s^{\tau}$, $k\gt 0$, $l, \tau\geq0$ and the weight $H(x), h_{1}(x), h_{2}(x)$ are continuous functions which change sign in $\mathbb{R}^{N}$. We will prove that the problem has at least two positive solutions by using the Nehari manifold and the fibering maps associated with the Euler functional for this problem. Keywords:Nehari manifold, quasilinear elliptic system, $p$-Laplacian operator, concave and convex nonlinearitiesCategory:35J66

45. CMB 2015 (vol 58 pp. 620)

Sands, Jonathan W.
 $L$-functions for Quadratic Characters and Annihilation of Motivic Cohomology Groups Let $n$ be a positive even integer, and let $F$ be a totally real number field and $L$ be an abelian Galois extension which is totally real or CM. Fix a finite set $S$ of primes of $F$ containing the infinite primes and all those which ramify in $L$, and let $S_L$ denote the primes of $L$ lying above those in $S$. Then $\mathcal{O}_L^S$ denotes the ring of $S_L$-integers of $L$. Suppose that $\psi$ is a quadratic character of the Galois group of $L$ over $F$. Under the assumption of the motivic Lichtenbaum conjecture, we obtain a non-trivial annihilator of the motivic cohomology group $H_\mathcal{M}^2(\mathcal{O}_L^S,\mathbb{Z}(n))$ from the lead term of the Taylor series for the $S$-modified Artin $L$-function $L_{L/F}^S(s,\psi)$ at $s=1-n$. Keywords:motivic cohomology, regulator, Artin L-functionsCategories:11R42, 11R70, 14F42, 19F27

46. CMB 2015 (vol 58 pp. 596)

Ongaro, Jared; Shapiro, Boris
 A Note on Planarity Stratification of Hurwitz Spaces One can easily show that any meromorphic function on a complex closed Riemann surface can be represented as a composition of a birational map of this surface to $\mathbb{CP}^2$ and a projection of the image curve from an appropriate point $p\in \mathbb{CP}^2$ to the pencil of lines through $p$. We introduce a natural stratification of Hurwitz spaces according to the minimal degree of a plane curve such that a given meromorphic function can be represented in the above way and calculate the dimensions of these strata. We observe that they are closely related to a family of Severi varieties studied earlier by J. Harris, Z. Ran and I. Tyomkin. Keywords:Hurwitz spaces, meromorphic functions, Severi varieties

47. CMB 2015 (vol 58 pp. 632)

Silberman, Lior
 Quantum Unique Ergodicity on Locally Symmetric Spaces: the Degenerate Lift Given a measure $\bar\mu_\infty$ on a locally symmetric space $Y=\Gamma\backslash G/K$, obtained as a weak-{*} limit of probability measures associated to eigenfunctions of the ring of invariant differential operators, we construct a measure $\bar\mu_\infty$ on the homogeneous space $X=\Gamma\backslash G$ which lifts $\bar\mu_\infty$ and which is invariant by a connected subgroup $A_{1}\subset A$ of positive dimension, where $G=NAK$ is an Iwasawa decomposition. If the functions are, in addition, eigenfunctions of the Hecke operators, then $\bar\mu_\infty$ is also the limit of measures associated to Hecke eigenfunctions on $X$. This generalizes results of the author with A. Venkatesh in the case where the spectral parameters stay away from the walls of the Weyl chamber. Keywords:quantum unique ergodicity, microlocal lift, spherical dualCategories:22E50, 43A85

48. CMB 2015 (vol 58 pp. 320)

Llamas, Aurora; Martínez-Bernal, José
 Cover Product and Betti Polynomial of Graphs For disjoint graphs $G$ and $H$, with fixed vertex covers $C(G)$ and $C(H)$, their cover product is the graph $G \circledast H$ with vertex set $V(G)\cup V(H)$ and edge set $E(G)\cup E(H)\cup\{\{i,j\}:i\in C(G), j\in C(H)\}$. We describe the graded Betti numbers of $G\circledast H$ in terms of those of $G$ and $H$. As applications we obtain: (i) For any positive integer $k$ there exists a connected bipartite graph $G$ such that $\operatorname{reg} R/I(G)=\mu_S(G)+k$, where, $I(G)$ denotes the edge ideal of $G$, $\operatorname{reg} R/I(G)$ is the Castelnuovo--Mumford regularity of $R/I(G)$ and $\mu_S(G)$ is the induced or strong matching number of $G$; (ii) The graded Betti numbers of the complement of a tree only depends upon its number of vertices; (iii) The $h$-vector of $R/I(G\circledast H)$ is described in terms of the $h$-vectors of $R/I(G)$ and $R/I(H)$. Furthermore, in a different direction, we give a recursive formula for the graded Betti numbers of chordal bipartite graphs. Keywords:Castelnuovo--Mumford regularity, chordal bipartite graph, edge ideal, graded Betti number, induced matching number, monomial idealCategories:13D02, 05E45

49. CMB 2015 (vol 58 pp. 402)

Tikuisis, Aaron Peter; Toms, Andrew
 On the Structure of Cuntz Semigroups in (Possibly) Nonunital C*-algebras We examine the ranks of operators in semi-finite $\mathrm{C}^*$-algebras as measured by their densely defined lower semicontinuous traces. We first prove that a unital simple $\mathrm{C}^*$-algebra whose extreme tracial boundary is nonempty and finite contains positive operators of every possible rank, independent of the property of strict comparison. We then turn to nonunital simple algebras and establish criteria that imply that the Cuntz semigroup is recovered functorially from the Murray-von Neumann semigroup and the space of densely defined lower semicontinuous traces. Finally, we prove that these criteria are satisfied by not-necessarily-unital approximately subhomogeneous algebras of slow dimension growth. Combined with results of the first-named author, this shows that slow dimension growth coincides with $\mathcal Z$-stability, for approximately subhomogeneous algebras. Keywords:nuclear C*-algebras, Cuntz semigroup, dimension functions, stably projectionless C*-algebras, approximately subhomogeneous C*-algebras, slow dimension growthCategories:46L35, 46L05, 46L80, 47L40, 46L85

50. CMB 2015 (vol 58 pp. 306)

Khoshkhah, Kaveh; Zaker, Manouchehr
 On the Largest Dynamic Monopolies of Graphs with a Given Average Threshold Let $G$ be a graph and $\tau$ be an assignment of nonnegative integer thresholds to the vertices of $G$. A subset of vertices, $D$ is said to be a $\tau$-dynamic monopoly, if $V(G)$ can be partitioned into subsets $D_0, D_1, \ldots, D_k$ such that $D_0=D$ and for any $i\in \{0, \ldots, k-1\}$, each vertex $v$ in $D_{i+1}$ has at least $\tau(v)$ neighbors in $D_0\cup \ldots \cup D_i$. Denote the size of smallest $\tau$-dynamic monopoly by $dyn_{\tau}(G)$ and the average of thresholds in $\tau$ by $\overline{\tau}$. We show that the values of $dyn_{\tau}(G)$ over all assignments $\tau$ with the same average threshold is a continuous set of integers. For any positive number $t$, denote the maximum $dyn_{\tau}(G)$ taken over all threshold assignments $\tau$ with $\overline{\tau}\leq t$, by $Ldyn_t(G)$. In fact, $Ldyn_t(G)$ shows the worst-case value of a dynamic monopoly when the average threshold is a given number $t$. We investigate under what conditions on $t$, there exists an upper bound for $Ldyn_{t}(G)$ of the form $c|G|$, where $c\lt 1$. Next, we show that $Ldyn_t(G)$ is coNP-hard for planar graphs but has polynomial-time solution for forests. Keywords:spread of influence in graphs, irreversible dynamic monopolies, target set selectionCategories:05C69, 05C85
 Page Previous 1 2 3 4 ... 20 Next
 top of page | contact us | privacy | site map |