Expand all Collapse all | Results 401 - 425 of 443 |
401. CMB 2001 (vol 44 pp. 210)
Growth Estimates on Positive Solutions of the Equation $\Delta u+K u^{\frac{n+2}{n-2}}=0$ in $\R^n$ We construct unbounded positive $C^2$-solutions of the equation
$\Delta u + K u^{(n + 2)/(n - 2)} = 0$ in $\R^n$ (equipped
with Euclidean metric $g_o$) such that $K$ is bounded between two
positive numbers in $\R^n$, the conformal metric $g=u^{4/(n-2)}g_o$
is complete, and the volume growth of $g$ can be arbitrarily fast
or reasonably slow according to the constructions. By imposing natural
conditions on $u$, we obtain growth estimate on the $L^{2n/(n-2)}$-norm
of the solution and show that it has slow decay.
Keywords:positive solution, conformal scalar curvature equation, growth estimate Categories:35J60, 58G03 |
402. CMB 2001 (vol 44 pp. 129)
LinÃ©arisation symplectique en dimension 2 In this paper the germ of neighborhood of a compact leaf in a
Lagrangian foliation is symplectically classified when the compact
leaf is $\bT^2$, the affine structure induced by the Lagrangian
foliation on the leaf is complete, and the holonomy of $\bT^2$ in
the foliation linearizes. The germ of neighborhood is classified by a
function, depending on one transverse coordinate, this function is
related to the affine structure of the nearly compact leaves.
Keywords:symplectic manifold, Lagrangian foliation, affine connection Categories:53C12, 58F05 |
403. CMB 2001 (vol 44 pp. 126)
Each Copy of the Real Line in $\C^2$ is Removable Around 1995, Professors Lupacciolu, Chirka and Stout showed that a
closed subset of $\C^N$ ($N\geq 2$) is removable for holomorphic
functions, if its topological dimension is less than or equal to
$N-2$. Besides, they asked whether closed subsets of $\C^2$
homeomorphic to the real line (the simplest 1-dimensional sets) are
removable for holomorphic functions. In this paper we propose a
positive answer to that question.
Keywords:holomorphic function, removable set Category:32D20 |
404. CMB 2001 (vol 44 pp. 97)
On the Density of Cyclic Quartic Fields An asymptotic formula is obtained for the number of cyclic quartic fields
over $Q$ with discriminant $\leq x$.
Keywords:cyclic quartic fields, density, discriminant Categories:11R16, 11R29 |
405. CMB 2000 (vol 43 pp. 427)
Helices, Hasimoto Surfaces and BÃ¤cklund Transformations Travelling wave solutions to the vortex filament flow generated by
elastica produce surfaces in $\R^3$ that carry mutually orthogonal
foliations by geodesics and by helices. These surfaces are classified
in the special cases where the helices are all congruent or are all
generated by a single screw motion. The first case yields a new
characterization for the B\"acklund transformation for constant
torsion curves in $\R^3$, previously derived from the well-known
transformation for pseudospherical surfaces. A similar investigation
for surfaces in $H^3$ or $S^3$ leads to a new transformation for
constant torsion curves in those spaces that is also derived from
pseudospherical surfaces.
Keywords:surfaces, filament flow, BÃ¤cklund transformations Categories:53A05, 58F37, 52C42, 58A15 |
406. CMB 2000 (vol 43 pp. 496)
Harmonic Polynomials Associated With Reflection Groups We extend Maxwell's representation of harmonic polynomials to $h$-harmonics
associated to a reflection invariant weight function $h_k$. Let $\CD_i$,
$1\le i \le d$, be Dunkl's operators associated with a reflection group.
For any homogeneous polynomial $P$ of degree $n$, we prove the
polynomial $|\xb|^{2 \gamma +d-2+2n}P(\CD)\{1/|\xb|^{2 \gamma +d-2}\}$ is
a $h$-harmonic polynomial of degree $n$, where $\gamma = \sum k_i$ and
$\CD=(\CD_1,\ldots,\CD_d)$. The construction yields a basis for
$h$-harmonics. We also discuss self-adjoint operators acting on the
space of $h$-harmonics.
Keywords:$h$-harmonics, reflection group, Dunkl's operators Categories:33C50, 33C45 |
407. CMB 2000 (vol 43 pp. 440)
On the Existence of a New Class of Contact Metric Manifolds A new class of 3-dimensional contact metric manifolds is found.
Moreover it is proved that there are no such manifolds in
dimensions greater than 3.
Keywords:contact metric manifolds, generalized $(\kappa,\mu)$-contact metric manifolds Categories:53C25, 53C15 |
408. CMB 2000 (vol 43 pp. 418)
Obstructions to $\mathcal{Z}$-Stability for Unital Simple $C^*$-Algebras Let $\cZ$ be the unital simple nuclear infinite dimensional
$C^*$-algebra which has the same Elliott invariant as $\bbC$,
introduced in \cite{JS}. A $C^*$-algebra is called $\cZ$-stable
if $A \cong A \otimes \cZ$. In this note we give some necessary
conditions for a unital simple $C^*$-algebra to be $\cZ$-stable.
Keywords:simple $C^*$-algebra, $\mathcal{Z}$-stability, weak (un)perforation in $K_0$ group, property $\Gamma$, finiteness Category:46L05 |
409. CMB 2000 (vol 43 pp. 294)
Fixed Points of Commuting Holomorphic Maps Without Boundary Regularity We identify a class of domains of $\C^n$ in which any two commuting
holomorphic self-maps have a common fixed point.
Keywords:Holomorphic self-maps, commuting functions, fixed points, Wolff point, Julia's Lemma Categories:32A10, 32A40, 32H15, 32A30 |
410. CMB 2000 (vol 43 pp. 362)
Examples of Half-Factorial Domains In this paper, we determine some sufficient conditions for an $A +
XB[X]$ domain to be an HFD. As a consequence we give new examples
of HFDs of the type $A + XB[X]$.
Keywords:atomic domain, HFD Categories:13A05, 13B30, 13F15, 13G05 |
411. CMB 2000 (vol 43 pp. 330)
Maximal Operators and Cantor Sets We consider maximal operators in the plane, defined by Cantor sets of
directions, and show such operators are not bounded on $L^2$ if the
Cantor set has positive Hausdorff dimension.
Keywords:maximal functions, Cantor set, lacunary set Categories:42B25, 43A46 |
412. CMB 2000 (vol 43 pp. 268)
Cockcroft Properties of Thompson's Group In a study of the word problem for groups, R.~J.~Thompson
considered a certain group $F$ of self-homeomorphisms of the Cantor
set and showed, among other things, that $F$ is finitely presented.
Using results of K.~S.~Brown and R.~Geoghegan, M.~N.~Dyer showed
that $F$ is the fundamental group of a finite two-complex $Z^2$
having Euler characteristic one and which is {\em Cockcroft}, in
the sense that each map of the two-sphere into $Z^2$ is
homologically trivial. We show that no proper covering complex of
$Z^2$ is Cockcroft. A general result on Cockcroft properties
implies that no proper regular covering complex of any finite
two-complex with fundamental group $F$ is Cockcroft.
Keywords:two-complex, covering space, Cockcroft two-complex, Thompson's group Categories:57M20, 20F38, 57M10, 20F34 |
413. CMB 2000 (vol 43 pp. 3)
Resolutions of Associative and Lie Algebras Certain canonical resolutions are described for free associative and
free Lie algebras in the category of non-associative algebras. These
resolutions derive in both cases from geometric objects, which in turn
reflect the combinatorics of suitable collections of leaf-labeled
trees.
Keywords:resolutions, homology, Lie algebras, associative algebras, non-associative algebras, Jacobi identity, leaf-labeled trees, associahedron Categories:18G10, 05C05, 16S10, 17B01, 17A50, 18G50 |
414. CMB 2000 (vol 43 pp. 60)
Trivial Units in Group Rings Let $G$ be an arbitrary group and let $U$ be a subgroup of the
normalized units in $\mathbb{Z}G$. We show that if $U$ contains $G$
as a subgroup of finite index, then $U = G$. This result can be used
to give an alternative proof of a recent result of Marciniak and
Sehgal on units in the integral group ring of a crystallographic group.
Keywords:units, trace, finite conjugate subgroup Categories:16S34, 16U60 |
415. CMB 2000 (vol 43 pp. 25)
Subdifferential Regularity of Directionally Lipschitzian Functions Formulas for the Clarke subdifferential are always expressed in the
form of inclusion. The equality form in these formulas generally
requires the functions to be directionally regular. This paper
studies the directional regularity of the general class of
extended-real-valued functions that are directionally Lipschitzian.
Connections with the concept of subdifferential regularity are also
established.
Keywords:subdifferential regularity, directional regularity, directionally Lipschitzian functions Categories:49J52, 58C20, 49J50, 90C26 |
416. CMB 2000 (vol 43 pp. 21)
The Commutant of an Abstract Backward Shift A bounded linear operator $T$ on a Banach space $X$ is an abstract
backward shift if the nullspace of $T$ is one dimensional, and the
union of the null spaces of $T^k$ for all $k \geq 1$ is dense in
$X$. In this paper it is shown that the commutant of an abstract
backward shift is an integral domain. This result is used to
derive properties of operators in the commutant.
Keywords:backward shift, commutant Category:47A99 |
417. CMB 1999 (vol 42 pp. 478)
A Remark On the Moser-Aubin Inequality For Axially Symmetric Functions On the Sphere Let $\scr S_r$ be the collection of all axially symmetric functions
$f$ in the Sobolev space $H^1(\Sph^2)$ such that $\int_{\Sph^2}
x_ie^{2f(\mathbf{x})} \, d\omega(\mathbf{x})$ vanishes for $i=1,2,3$.
We prove that
$$
\inf_{f\in \scr S_r} \frac12 \int_{\Sph^2} |\nabla f|^2 \, d\omega
+ 2\int_{\Sph^2} f \, d\omega- \log \int_{\Sph^2} e^{2f} \, d\omega > -\oo,
$$
and that this infimum is attained. This complements recent work of
Feldman, Froese, Ghoussoub and Gui on a conjecture of Chang and Yang
concerning the Moser-Aubin inequality.
Keywords:Moser inequality, borderline Sobolev inequalities, axially symmetric functions Categories:26D15, 58G30 |
418. CMB 1999 (vol 42 pp. 427)
Ramanujan and the Modular $j$-Invariant A new infinite product $t_n$ was introduced by S.~Ramanujan on the
last page of his third notebook. In this paper, we prove
Ramanujan's assertions about $t_n$ by establishing new connections
between the modular $j$-invariant and Ramanujan's cubic theory of
elliptic functions to alternative bases. We also show that for
certain integers $n$, $t_n$ generates the Hilbert class field of
$\mathbb{Q} (\sqrt{-n})$. This shows that $t_n$ is a new class
invariant according to H.~Weber's definition of class invariants.
Keywords:modular functions, the Borweins' cubic theta-functions, Hilbert class fields Categories:33C05, 33E05, 11R20, 11R29 |
419. CMB 1999 (vol 42 pp. 274)
The Bockstein Map is Necessary We construct two non-isomorphic nuclear, stably finite,
real rank zero $C^\ast$-algebras $E$ and $E'$ for which
there is an isomorphism of ordered groups
$\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to
\bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible
with all the coefficient transformations. The $C^\ast$-algebras
$E$ and $E'$ are not isomorphic since there is no $\Theta$
as above which is also compatible with the Bockstein operations.
By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair
of non-isomorphic, real rank zero, purely infinite $C^\ast$-algebras
with similar properties.
Keywords:$K$-theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$-algebras, real rank zero, purely infinite, classification Categories:46L35, 46L80, 19K14 |
420. CMB 1999 (vol 42 pp. 335)
Cyclic Subgroup Separability of HNN-Extensions with Cyclic Associated Subgroups We derive a necessary and sufficient condition for HNN-extensions
of cyclic subgroup separable groups with cyclic associated
subgroups to be cyclic subgroup separable. Applying this, we
explicitly characterize the residual finiteness and the cyclic
subgroup separability of HNN-extensions of abelian groups with
cyclic associated subgroups. We also consider these residual
properties of HNN-extensions of nilpotent groups with cyclic
associated subgroups.
Keywords:HNN-extension, nilpotent groups, cyclic subgroup separable $(\pi_c)$, residually finite Categories:20E26, 20E06, 20F10 |
421. CMB 1999 (vol 42 pp. 321)
Averaging Operators and Martingale Inequalities in Rearrangement Invariant Function Spaces We shall study some connection between averaging operators and
martingale inequalities in rearrangement invariant function spaces.
In Section~2 the equivalence between Shimogaki's theorem and some
martingale inequalities will be established, and in Section~3 the
equivalence between Boyd's theorem and martingale inequalities with
change of probability measure will be established.
Keywords:martingale inequalities, rearrangement invariant function spaces Categories:60G44, 60G46, 46E30 |
422. CMB 1999 (vol 42 pp. 285)
On Kloosterman Sums with Oscillating Coefficients In this paper we prove: for any positive integers $a$ and $q$ with
$(a,q) =1$, we have uniformly
$$
\sum_{\substack{n \leq N \\ (n,q) = 1, \,n\on \equiv 1 (\mod q)}}
\mu (n) e \left( \frac{a\on}{q} \right) \ll Nd (q) \left\{
\frac{\log^{\frac52} N}{q^{\frac12}} + \frac{q^{\frac15}
\log^{\frac{13}5} N}{N^{\frac15}} \right\}.
$$
This improves the previous bound obtained by D.~Hajela,
A.~Pollington and B.~Smith~\cite{5}.
Keywords:Kloosterman sums, oscillating coefficients, estimate Category:10G10 |
423. CMB 1999 (vol 42 pp. 190)
Topological Quantum Field Theory and Strong Shift Equivalence Given a TQFT in dimension $d+1,$ and an infinite cyclic covering of
a closed $(d+1)$-dimensional manifold $M$, we define an invariant
taking values in a strong shift equivalence class of matrices. The
notion of strong shift equivalence originated in R.~Williams' work
in symbolic dynamics. The Turaev-Viro module associated to a TQFT
and an infinite cyclic covering is then given by the Jordan form of
this matrix away from zero. This invariant is also defined if the
boundary of $M$ has an $S^1$ factor and the infinite cyclic cover
of the boundary is standard. We define a variant of a TQFT
associated to a finite group $G$ which has been studied by Quinn.
In this way, we recover a link invariant due to D.~Silver and
S.~Williams. We also obtain a variation on the Silver-Williams
invariant, by using the TQFT associated to $G$ in its unmodified form.
Keywords:knot, link, TQFT, symbolic dynamics, shift equivalence Categories:57R99, 57M99, 54H20 |
424. CMB 1999 (vol 42 pp. 198)
Commutators and Analytic Dependence of Fourier-Bessel Series on $(0,\infty)$ In this paper we study the boundedness of the commutators $[b,
S_n]$ where $b$ is a $\BMO$ function and $S_n$ denotes the $n$-th
partial sum of the Fourier-Bessel series on $(0,\infty)$.
Perturbing the measure by $\exp(2b)$ we obtain that certain
operators related to $S_n$ depend analytically on the functional
parameter $b$.
Keywords:Fourier-Bessel series, commutators, BMO, $A_p$ weights Category:42C10 |
425. CMB 1999 (vol 42 pp. 139)
Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions |
Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions Every weakly compact composition operator between weighted Banach
spaces $H_v^{\infty}$ of analytic functions with weighted sup-norms is
compact. Lower and upper estimates of the essential norm of
continuous composition operators are obtained. The norms of the point
evaluation functionals on the Banach space $H_v^{\infty}$ are also
estimated, thus permitting to get new characterizations of compact
composition operators between these spaces.
Keywords:weighted Banach spaces of holomorphic functions, composition operator, compact operator, weakly compact operator Categories:47B38, 30D55, 46E15 |