CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword f

  Expand all        Collapse all Results 401 - 425 of 455

401. CMB 2002 (vol 45 pp. 265)

Nawrocki, Marek
On the Smirnov Class Defined by the Maximal Function
H.~O.~Kim has shown that contrary to the case of $H^p$-space, the Smirnov class $M$ defined by the radial maximal function is essentially smaller than the classical Smirnov class of the disk. In the paper we show that these two classes have the same corresponding locally convex structure, {\it i.e.} they have the same dual spaces and the same Fr\'echet envelopes. We describe a general form of a continuous linear functional on $M$ and multiplier from $M$ into $H^p$, $0 < p \leq \infty$.

Keywords:Smirnov class, maximal radial function, multipliers, dual space, Fréchet envelope
Categories:46E10, 30A78, 30A76

402. CMB 2002 (vol 45 pp. 213)

Gordon, B. Brent; Joshi, Kirti
Griffiths Groups of Supersingular Abelian Varieties
The Griffiths group $\Gr^r(X)$ of a smooth projective variety $X$ over an algebraically closed field is defined to be the group of homologically trivial algebraic cycles of codimension $r$ on $X$ modulo the subgroup of algebraically trivial algebraic cycles. The main result of this paper is that the Griffiths group $\Gr^2 (A_{\bar{k}})$ of a supersingular abelian variety $A_{\bar{k}}$ over the algebraic closure of a finite field of characteristic $p$ is at most a $p$-primary torsion group. As a corollary the same conclusion holds for supersingular Fermat threefolds. In contrast, using methods of C.~Schoen it is also shown that if the Tate conjecture is valid for all smooth projective surfaces and all finite extensions of the finite ground field $k$ of characteristic $p>2$, then the Griffiths group of any ordinary abelian threefold $A_{\bar{k}}$ over the algebraic closure of $k$ is non-trivial; in fact, for all but a finite number of primes $\ell\ne p$ it is the case that $\Gr^2 (A_{\bar{k}}) \otimes \Z_\ell \neq 0$.

Keywords:Griffiths group, Beauville conjecture, supersingular Abelian variety, Chow group
Categories:14J20, 14C25

403. CMB 2002 (vol 45 pp. 109)

Hall, R. R.; Shiu, P.
The Distribution of Totatives
D.~H.~Lehmer initiated the study of the distribution of totatives, which are numbers coprime with a given integer. This led to various problems considered by P.~Erd\H os, who made a conjecture on such distributions. We prove his conjecture by establishing a theorem on the ordering of residues.

Keywords:Euler's function, totatives
Categories:11A05, 11A07, 11A25

404. CMB 2002 (vol 45 pp. 154)

Weitsman, Allen
On the Poisson Integral of Step Functions and Minimal Surfaces
Applications of minimal surface methods are made to obtain information about univalent harmonic mappings. In the case where the mapping arises as the Poisson integral of a step function, lower bounds for the number of zeros of the dilatation are obtained in terms of the geometry of the image.

Keywords:harmonic mappings, dilatation, minimal surfaces
Categories:30C62, 31A05, 31A20, 49Q05

405. CMB 2002 (vol 45 pp. 138)

Spearman, Blair K.; Williams, Kenneth S.
The Discriminant of a Dihedral Quintic Field Defined by a Trinomial $X^5 + aX + b$
Let $X^5 + aX + b \in Z[X]$ have Galois group $D_5$. Let $\theta$ be a root of $X^5 + aX + b$. An explicit formula is given for the discriminant of $Q(\theta)$.

Keywords:dihedral quintic field, trinomial, discriminant
Categories:11R21, 11R29

406. CMB 2002 (vol 45 pp. 97)

Haas, Andrew
Invariant Measures and Natural Extensions
We study ergodic properties of a family of interval maps that are given as the fractional parts of certain real M\"obius transformations. Included are the maps that are exactly $n$-to-$1$, the classical Gauss map and the Renyi or backward continued fraction map. A new approach is presented for deriving explicit realizations of natural automorphic extensions and their invariant measures.

Keywords:Continued fractions, interval maps, invariant measures
Categories:11J70, 58F11, 58F03

407. CMB 2001 (vol 44 pp. 504)

Zhang, Yong
Weak Amenability of a Class of Banach Algebras
We show that, if a Banach algebra $\A$ is a left ideal in its second dual algebra and has a left bounded approximate identity, then the weak amenability of $\A$ implies the ($2m+1$)-weak amenability of $\A$ for all $m\geq 1$.

Keywords:$n$-weak amenability, left ideals, left bounded approximate identity
Categories:46H20, 46H10, 46H25

408. CMB 2001 (vol 44 pp. 398)

Cardon, David A.; Ram Murty, M.
Exponents of Class Groups of Quadratic Function Fields over Finite Fields
We find a lower bound on the number of imaginary quadratic extensions of the function field $\F_q(T)$ whose class groups have an element of a fixed order. More precisely, let $q \geq 5$ be a power of an odd prime and let $g$ be a fixed positive integer $\geq 3$. There are $\gg q^{\ell (\frac{1}{2}+\frac{1}{g})}$ polynomials $D \in \F_q[T]$ with $\deg(D) \leq \ell$ such that the class groups of the quadratic extensions $\F_q(T,\sqrt{D})$ have an element of order~$g$.

Keywords:class number, quadratic function field
Categories:11R58, 11R29

409. CMB 2001 (vol 44 pp. 323)

Schuman, Bertrand
Une classe d'hamiltoniens polynomiaux isochrones
Soit $H_0 = \frac{x^2+y^2}{2}$ un hamiltonien isochrone du plan $\Rset^2$. On met en \'evidence une classe d'hamiltoniens isochrones qui sont des perturbations polynomiales de $H_0$. On obtient alors une condition n\'ecessaire d'isochronisme, et un crit\`ere de choix pour les hamiltoniens isochrones. On voit ce r\'esultat comme \'etant une g\'en\'eralisation du caract\`ere isochrone des perturbations hamiltoniennes homog\`enes consid\'er\'ees dans [L], [P], [S]. Let $H_0 = \frac{x^2+y^2}{2}$ be an isochronous Hamiltonian of the plane $\Rset^2$. We obtain a necessary condition for a system to be isochronous. We can think of this result as a generalization of the isochronous behaviour of the homogeneous polynomial perturbation of the Hamiltonian $H_0$ considered in [L], [P], [S].

Keywords:Hamiltonian system, normal forms, resonance, linearization
Categories:34C20, 58F05, 58F22, 58F30

410. CMB 2001 (vol 44 pp. 376)

Zhang, Xi
A Note on $p$-Harmonic $1$-Forms on Complete Manifolds
In this paper we prove that there is no nontrivial $L^{q}$-integrably $p$-harmonic $1$-form on a complete manifold with nonnegatively Ricci curvature $(0
Keywords:$p$-harmonic, $1$-form, complete manifold, Sobolev inequality
Categories:58E20, 53C21

411. CMB 2001 (vol 44 pp. 337)

Vinet, Luc; Zhedanov, Alexei
Spectral Transformations of the Laurent Biorthogonal Polynomials, II. Pastro Polynomials
We continue to study the simplest closure conditions for chains of spectral transformations of the Laurent biorthogonal polynomials ($\LBP$). It is shown that the 1-1-periodic $q$-closure condition leads to the $\LBP$ introduced by Pastro. We introduce classes of semi-classical and Laguerre-Hahn $\LBP$ associated to generic closure conditions of the chain of spectral transformations.

Keywords:Laurent orthogonal polynomials, Pastro polynomials, spectral transformations
Category:33D45

412. CMB 2001 (vol 44 pp. 266)

Cencelj, M.; Dranishnikov, A. N.
Extension of Maps to Nilpotent Spaces
We show that every compactum has cohomological dimension $1$ with respect to a finitely generated nilpotent group $G$ whenever it has cohomological dimension $1$ with respect to the abelianization of $G$. This is applied to the extension theory to obtain a cohomological dimension theory condition for a finite-dimensional compactum $X$ for extendability of every map from a closed subset of $X$ into a nilpotent $\CW$-complex $M$ with finitely generated homotopy groups over all of $X$.

Keywords:cohomological dimension, extension of maps, nilpotent group, nilpotent space
Categories:55M10, 55S36, 54C20, 54F45

413. CMB 2001 (vol 44 pp. 210)

Leung, Man Chun
Growth Estimates on Positive Solutions of the Equation $\Delta u+K u^{\frac{n+2}{n-2}}=0$ in $\R^n$
We construct unbounded positive $C^2$-solutions of the equation $\Delta u + K u^{(n + 2)/(n - 2)} = 0$ in $\R^n$ (equipped with Euclidean metric $g_o$) such that $K$ is bounded between two positive numbers in $\R^n$, the conformal metric $g=u^{4/(n-2)}g_o$ is complete, and the volume growth of $g$ can be arbitrarily fast or reasonably slow according to the constructions. By imposing natural conditions on $u$, we obtain growth estimate on the $L^{2n/(n-2)}$-norm of the solution and show that it has slow decay.

Keywords:positive solution, conformal scalar curvature equation, growth estimate
Categories:35J60, 58G03

414. CMB 2001 (vol 44 pp. 129)

Currás-Bosch, Carlos
Linéarisation symplectique en dimension 2
In this paper the germ of neighborhood of a compact leaf in a Lagrangian foliation is symplectically classified when the compact leaf is $\bT^2$, the affine structure induced by the Lagrangian foliation on the leaf is complete, and the holonomy of $\bT^2$ in the foliation linearizes. The germ of neighborhood is classified by a function, depending on one transverse coordinate, this function is related to the affine structure of the nearly compact leaves.

Keywords:symplectic manifold, Lagrangian foliation, affine connection
Categories:53C12, 58F05

415. CMB 2001 (vol 44 pp. 126)

Zeron, E. Santillan
Each Copy of the Real Line in $\C^2$ is Removable
Around 1995, Professors Lupacciolu, Chirka and Stout showed that a closed subset of $\C^N$ ($N\geq 2$) is removable for holomorphic functions, if its topological dimension is less than or equal to $N-2$. Besides, they asked whether closed subsets of $\C^2$ homeomorphic to the real line (the simplest 1-dimensional sets) are removable for holomorphic functions. In this paper we propose a positive answer to that question.

Keywords:holomorphic function, removable set
Category:32D20

416. CMB 2001 (vol 44 pp. 97)

Ou, Zhiming M.; Williams, Kenneth S.
On the Density of Cyclic Quartic Fields
An asymptotic formula is obtained for the number of cyclic quartic fields over $Q$ with discriminant $\leq x$.

Keywords:cyclic quartic fields, density, discriminant
Categories:11R16, 11R29

417. CMB 2000 (vol 43 pp. 427)

Ivey, Thomas A.
Helices, Hasimoto Surfaces and Bäcklund Transformations
Travelling wave solutions to the vortex filament flow generated by elastica produce surfaces in $\R^3$ that carry mutually orthogonal foliations by geodesics and by helices. These surfaces are classified in the special cases where the helices are all congruent or are all generated by a single screw motion. The first case yields a new characterization for the B\"acklund transformation for constant torsion curves in $\R^3$, previously derived from the well-known transformation for pseudospherical surfaces. A similar investigation for surfaces in $H^3$ or $S^3$ leads to a new transformation for constant torsion curves in those spaces that is also derived from pseudospherical surfaces.

Keywords:surfaces, filament flow, Bäcklund transformations
Categories:53A05, 58F37, 52C42, 58A15

418. CMB 2000 (vol 43 pp. 496)

Xu, Yuan
Harmonic Polynomials Associated With Reflection Groups
We extend Maxwell's representation of harmonic polynomials to $h$-harmonics associated to a reflection invariant weight function $h_k$. Let $\CD_i$, $1\le i \le d$, be Dunkl's operators associated with a reflection group. For any homogeneous polynomial $P$ of degree $n$, we prove the polynomial $|\xb|^{2 \gamma +d-2+2n}P(\CD)\{1/|\xb|^{2 \gamma +d-2}\}$ is a $h$-harmonic polynomial of degree $n$, where $\gamma = \sum k_i$ and $\CD=(\CD_1,\ldots,\CD_d)$. The construction yields a basis for $h$-harmonics. We also discuss self-adjoint operators acting on the space of $h$-harmonics.

Keywords:$h$-harmonics, reflection group, Dunkl's operators
Categories:33C50, 33C45

419. CMB 2000 (vol 43 pp. 440)

Koufogiorgos, Themis; Tsichlias, Charalambos
On the Existence of a New Class of Contact Metric Manifolds
A new class of 3-dimensional contact metric manifolds is found. Moreover it is proved that there are no such manifolds in dimensions greater than 3.

Keywords:contact metric manifolds, generalized $(\kappa,\mu)$-contact metric manifolds
Categories:53C25, 53C15

420. CMB 2000 (vol 43 pp. 418)

Gong, Guihua; Jiang, Xinhui; Su, Hongbing
Obstructions to $\mathcal{Z}$-Stability for Unital Simple $C^*$-Algebras
Let $\cZ$ be the unital simple nuclear infinite dimensional $C^*$-algebra which has the same Elliott invariant as $\bbC$, introduced in \cite{JS}. A $C^*$-algebra is called $\cZ$-stable if $A \cong A \otimes \cZ$. In this note we give some necessary conditions for a unital simple $C^*$-algebra to be $\cZ$-stable.

Keywords:simple $C^*$-algebra, $\mathcal{Z}$-stability, weak (un)perforation in $K_0$ group, property $\Gamma$, finiteness
Category:46L05

421. CMB 2000 (vol 43 pp. 294)

Bracci, Filippo
Fixed Points of Commuting Holomorphic Maps Without Boundary Regularity
We identify a class of domains of $\C^n$ in which any two commuting holomorphic self-maps have a common fixed point.

Keywords:Holomorphic self-maps, commuting functions, fixed points, Wolff point, Julia's Lemma
Categories:32A10, 32A40, 32H15, 32A30

422. CMB 2000 (vol 43 pp. 362)

Kim, Hwankoo
Examples of Half-Factorial Domains
In this paper, we determine some sufficient conditions for an $A + XB[X]$ domain to be an HFD. As a consequence we give new examples of HFDs of the type $A + XB[X]$.

Keywords:atomic domain, HFD
Categories:13A05, 13B30, 13F15, 13G05

423. CMB 2000 (vol 43 pp. 330)

Hare, Kathryn E.
Maximal Operators and Cantor Sets
We consider maximal operators in the plane, defined by Cantor sets of directions, and show such operators are not bounded on $L^2$ if the Cantor set has positive Hausdorff dimension.

Keywords:maximal functions, Cantor set, lacunary set
Categories:42B25, 43A46

424. CMB 2000 (vol 43 pp. 268)

Bogley, W. A.; Gilbert, N. D.; Howie, James
Cockcroft Properties of Thompson's Group
In a study of the word problem for groups, R.~J.~Thompson considered a certain group $F$ of self-homeomorphisms of the Cantor set and showed, among other things, that $F$ is finitely presented. Using results of K.~S.~Brown and R.~Geoghegan, M.~N.~Dyer showed that $F$ is the fundamental group of a finite two-complex $Z^2$ having Euler characteristic one and which is {\em Cockcroft}, in the sense that each map of the two-sphere into $Z^2$ is homologically trivial. We show that no proper covering complex of $Z^2$ is Cockcroft. A general result on Cockcroft properties implies that no proper regular covering complex of any finite two-complex with fundamental group $F$ is Cockcroft.

Keywords:two-complex, covering space, Cockcroft two-complex, Thompson's group
Categories:57M20, 20F38, 57M10, 20F34

425. CMB 2000 (vol 43 pp. 25)

Bounkhel, M.; Thibault, L.
Subdifferential Regularity of Directionally Lipschitzian Functions
Formulas for the Clarke subdifferential are always expressed in the form of inclusion. The equality form in these formulas generally requires the functions to be directionally regular. This paper studies the directional regularity of the general class of extended-real-valued functions that are directionally Lipschitzian. Connections with the concept of subdifferential regularity are also established.

Keywords:subdifferential regularity, directional regularity, directionally Lipschitzian functions
Categories:49J52, 58C20, 49J50, 90C26
Page
   1 ... 16 17 18 19    

© Canadian Mathematical Society, 2015 : https://cms.math.ca/