376. CMB 2004 (vol 47 pp. 481)
 Bekjan, Turdebek N.

A New Characterization of Hardy Martingale Cotype Space
We give a new characterization of Hardy martingale cotype
property of complex quasiBanach space by using the existence of a
kind of plurisubharmonic functions. We also characterize the best
constants of Hardy martingale inequalities with values
in the complex quasiBanach space.
Keywords:Hardy martingale, Hardy martingale cotype,, plurisubharmonic function Categories:46B20, 52A07, 60G44 

377. CMB 2004 (vol 47 pp. 624)
 Zhang, Xi

A Compactness Theorem for YangMills Connections
In this paper, we consider YangMills connections
on a vector bundle $E$ over a compact Riemannian manifold $M$ of
dimension $m> 4$, and we show that any set of YangMills
connections with the uniformly bounded $L^{\frac{m}{2}}$norm of
curvature is compact in $C^{\infty}$ topology.
Keywords:YangMills connection, vector bundle, gauge transformation Categories:58E20, 53C21 

378. CMB 2004 (vol 47 pp. 530)
 Iranmanesh, A.; Khosravi, B.

A Characterization of $ PSU_{11}(q)$
Order components of a finite simple group were introduced in [4].
It was proved that some nonabelian simple groups are uniquely determined
by their order components. As the main result of this paper, we
show that groups $PSU_{11}(q)$ are also uniquely determined by
their order components. As corollaries of this result, the
validity of a conjecture of J. G. Thompson and a conjecture of W.
Shi and J. Bi both on $PSU_{11}(q)$ are obtained.
Keywords:Prime graph, order component, finite group,simple group Categories:20D08, 20D05, 20D60 

379. CMB 2004 (vol 47 pp. 389)
380. CMB 2004 (vol 47 pp. 343)
 Drensky, Vesselin; Hammoudi, Lakhdar

Combinatorics of Words and Semigroup Algebras Which Are Sums of Locally Nilpotent Subalgebras
We construct new examples of nonnil algebras with any number of
generators, which are direct sums of two
locally nilpotent subalgebras. Like all previously known examples, our examples
are contracted semigroup algebras and the underlying semigroups are unions
of locally nilpotent subsemigroups.
In our constructions we make more
transparent
than in the past the close relationship between the considered problem
and combinatorics of words.
Keywords:locally nilpotent rings,, nil rings, locally nilpotent semigroups,, semigroup algebras, monomial algebras, infinite words Categories:16N40, 16S15, 20M05, 20M25, 68R15 

381. CMB 2004 (vol 47 pp. 321)
 Bullejos, M.; Cegarra, A. M.

Classifying Spaces for Monoidal Categories Through Geometric Nerves
The usual constructions of classifying spaces for monoidal categories
produce CWcomplexes with
many cells that, moreover, do not have any proper geometric meaning.
However, geometric nerves of
monoidal categories are very handy simplicial sets whose simplices
have
a pleasing geometric
description: they are diagrams with the shape of the 2skeleton of
oriented standard simplices. The
purpose of this paper is to prove that geometric realizations of
geometric nerves are classifying
spaces for monoidal categories.
Keywords:monoidal category, pseudosimplicial category,, simplicial set, classifying space, homotopy type Categories:18D10, 18G30, 55P15, 55P35, 55U40 

382. CMB 2004 (vol 47 pp. 332)
 Charette, Virginie; Goldman, William M.; Jones, Catherine A.

Recurrent Geodesics in Flat Lorentz $3$Manifolds
Let $M$ be a complete flat Lorentz $3$manifold $M$ with purely
hyperbolic holonomy $\Gamma$. Recurrent geodesic rays are completely
classified when $\Gamma$ is cyclic. This implies that for any pair of
periodic geodesics $\gamma_1$, $\gamma_2$, a unique geodesic forward
spirals towards $\gamma_1$ and backward spirals towards $\gamma_2$.
Keywords:geometric structures on lowdimensional manifolds, notions of recurrence Categories:57M50, 37B20 

383. CMB 2004 (vol 47 pp. 417)
384. CMB 2004 (vol 47 pp. 398)
 McKinnon, David

A Reduction of the BatyrevManin Conjecture for Kummer Surfaces
Let $V$ be a $K3$ surface defined over a number field $k$. The
BatyrevManin conjecture for $V$ states that for every nonempty open
subset $U$ of $V$, there exists a finite set $Z_U$ of accumulating
rational curves such that the density of rational points on $UZ_U$ is
strictly less than the density of rational points on $Z_U$. Thus,
the set of rational points of $V$ conjecturally admits a stratification
corresponding to the sets $Z_U$ for successively smaller sets $U$.
In this paper, in the case that $V$ is a Kummer surface, we prove that
the BatyrevManin conjecture for $V$ can be reduced to the
BatyrevManin conjecture for $V$ modulo the endomorphisms of $V$
induced by multiplication by $m$ on the associated abelian surface
$A$. As an application, we use this to show that given some restrictions
on $A$, the set of rational points of $V$ which lie on rational curves
whose preimages have geometric genus 2 admits a stratification of
Keywords:rational points, BatyrevManin conjecture, Kummer, surface, rational curve, abelian surface, height Categories:11G35, 14G05 

385. CMB 2004 (vol 47 pp. 298)
 Yahaghi, Bamdad R.

Near Triangularizability Implies Triangularizability
In this paper we consider collections of
compact operators on a real or
complex Banach space including linear operators
on finitedimensional vector spaces. We show
that such a collection is simultaneously
triangularizable if and only if it is arbitrarily
close to a simultaneously triangularizable
collection of compact operators. As an application
of these results we obtain an invariant subspace
theorem for certain bounded operators. We
further prove that in finite dimensions near
reducibility implies reducibility whenever
the ground field is $\BR$ or $\BC$.
Keywords:Linear transformation, Compact operator,, Triangularizability, Banach space, Hilbert, space Categories:47A15, 47D03, 20M20 

386. CMB 2004 (vol 47 pp. 237)
 Laubie, François

Ramification des sÃ©ries formelles
Let $p$ be a prime number. Let $k$ be a finite field of characteristic $p$.
The subset $X+X^2 k[[X]]$ of the ring $k[[X]]$ is a group under the substitution
law $\circ $ sometimes called the Nottingham group of $k$; it is denoted by
$\mathcal{R}_k$. The ramification of one series $\gamma\in\mathcal{R}_k$ is
caracterized by its lower ramification numbers: $i_m(\gamma)=\ord_X
\bigl(\gamma^{p^m} (X)/X  1\bigr)$, as well as its upper ramification numbers:
$$
u_m (\gamma) = i_0 (\gamma) + \frac{i_1 (\gamma)  i_0(\gamma)}{p} +
\cdots + \frac{i_m (\gamma)  i_{m1} (\gamma)}{p^m} , \quad (m \in
\mathbb{N}).
$$
By Sen's theorem, the $u_m(\gamma)$ are integers. In this paper, we determine
the sequences of integers $(u_m)$ for which there exists $\gamma\in\mathcal{R}_k$
such that $u_m(\gamma)=u_m$ for all integer $m \geq 0$.
Keywords:ramification, Nottingham group Categories:11S15, 20E18 

387. CMB 2004 (vol 47 pp. 73)
 Li, Ma; Dezhong, Chen

Systems of Hermitian Quadratic Forms
In this paper, we give some conditions to judge when a system of
Hermitian quadratic forms has a real linear combination which is
positive definite or positive semidefinite. We also study some
related geometric and topological properties of the moduli space.
Keywords:hermitian quadratic form, positive definite, positive semidefinite Category:15A63 

388. CMB 2004 (vol 47 pp. 152)
389. CMB 2004 (vol 47 pp. 133)
 Wang, Wei

Embeddability of Some ThreeDimensional Weakly Pseudoconvex ${\rm CR}$ Structures
We prove that a class of perturbations of standard ${\rm CR}$
structure on the boundary of threedimensional complex ellipsoid
$E_{p,q}$ can be realized as hypersurfaces on $\mathbb{C}^2$, which
generalizes the result of Burns and Epstein on the embeddability of
some perturbations of standard ${\rm CR}$ structure on $S^3$.
Keywords:deformations, embeddability, complex ellipsoids Categories:32V30, 32G07, 32V35 

390. CMB 2004 (vol 47 pp. 22)
 Goto, Yasuhiro

A Note on the Height of the Formal Brauer Group of a $K3$ Surface
Using weighted Delsarte surfaces, we give examples of $K3$ surfaces
in positive characteristic whose formal Brauer groups have height
equal to $5$, $8$ or $9$. These are among the four values of the
height left open in the article of Yui \cite{Y}.
Keywords:formal Brauer groups, $K3$ surfaces in positive, characteristic, weighted Delsarte surfaces Categories:14L05, 14J28 

391. CMB 2003 (vol 46 pp. 617)
 Pak, Hong Kyung

On Harmonic Theory in Flows
Recently [8], a harmonic theory was developed for a compact
contact manifold from the viewpoint of the transversal geometry of
contact flow. A contact flow is a typical example of geodesible
flow. As a natural generalization of the contact flow, the present
paper develops a harmonic theory for various flows on compact
manifolds. We introduce the notions of $H$harmonic and
$H^*$harmonic spaces associated to a H\"ormander flow. We also
introduce the notions of basic harmonic spaces associated to a weak
basic flow. One of our main results is to show that in the special
case of isometric flow these harmonic spaces are isomorphic to the
cohomology spaces of certain complexes. Moreover, we find an
obstruction for a geodesible flow to be isometric.
Keywords:contact structure, geodesible flow, isometric flow, basic cohomology Categories:53C20, 57R30 

392. CMB 2003 (vol 46 pp. 632)
 Runde, Volker

The Operator Amenability of Uniform Algebras
We prove a quantized version of a theorem by M.~V.~She\u{\i}nberg:
A uniform algebra equipped with its canonical, {\it i.e.}, minimal,
operator space structure is operator amenable if and only if it is
a commutative $C^\ast$algebra.
Keywords:uniform algebras, amenable Banach algebras, operator amenability, minimal, operator space Categories:46H20, 46H25, 46J10, 46J40, 47L25 

393. CMB 2003 (vol 46 pp. 373)
 Laugesen, Richard S.; Pritsker, Igor E.

Potential Theory of the FarthestPoint Distance Function
We study the farthestpoint distance function, which measures the
distance from $z \in \mathbb{C}$ to the farthest point or points of
a given compact set $E$ in the plane.
The logarithm of this distance is subharmonic as a function of $z$,
and equals the logarithmic potential of a unique probability measure
with unbounded support. This measure $\sigma_E$ has many interesting
properties that reflect the topology and geometry of the compact set
$E$. We prove $\sigma_E(E) \leq \frac12$ for polygons inscribed in a
circle, with equality if and only if $E$ is a regular $n$gon for some
odd $n$. Also we show $\sigma_E(E) = \frac12$ for smooth convex sets of
constant width. We conjecture $\sigma_E(E) \leq \frac12$ for all~$E$.
Keywords:distance function, farthest points, subharmonic function, representing measure, convex bodies of constant width Categories:31A05, 52A10, 52A40 

394. CMB 2003 (vol 46 pp. 265)
 Oh, Seungsang

Reducing Spheres and Klein Bottles after Dehn Fillings
Let $M$ be a compact, connected, orientable, irreducible 3manifold with a
torus boundary. It is known that if two Dehn fillings on $M$ along the
boundary produce a reducible manifold and a manifold containing a Klein
bottle, then the distance between the filling slopes is at most three. This
paper gives a remarkably short proof of this result.
Keywords:Dehn filling, reducible, Klein bottle Category:57M50 

395. CMB 2003 (vol 46 pp. 310)
396. CMB 2003 (vol 46 pp. 268)
 Puls, Michael J.

Group Cohomology and $L^p$Cohomology of Finitely Generated Groups
Let $G$ be a finitely generated, infinite group, let $p>1$, and let
$L^p(G)$ denote the Banach space $\{ \sum_{x\in G} a_xx \mid \sum_{x\in
G} a_x ^p < \infty \}$. In this paper we will study the first
cohomology group of $G$ with coefficients in $L^p(G)$, and the first
reduced $L^p$cohomology space of $G$. Most of our results will be for a
class of groups that contains all finitely generated, infinite nilpotent
groups.
Keywords:group cohomology, $L^p$cohomology, central element of infinite order, harmonic function, continuous linear functional Categories:43A15, 20F65, 20F18 

397. CMB 2003 (vol 46 pp. 216)
 Li, ChiKwong; Rodman, Leiba; Šemrl, Peter

Linear Maps on Selfadjoint Operators Preserving Invertibility, Positive Definiteness, Numerical Range
Let $H$ be a complex Hilbert space, and $\HH$ be the real linear space of
bounded selfadjoint operators on $H$. We study linear maps $\phi\colon \HH
\to \HH$ leaving invariant various properties such as invertibility, positive
definiteness, numerical range, {\it etc}. The maps $\phi$ are not assumed
{\it a priori\/} continuous. It is shown that under an appropriate surjective
or injective assumption $\phi$ has the form $X \mapsto \xi TXT^*$ or $X \mapsto
\xi TX^tT^*$, for a suitable invertible or unitary $T$ and $\xi\in\{1, 1\}$,
where $X^t$ stands for the transpose of $X$ relative to some orthonormal basis.
Examples are given to show that the surjective or injective assumption cannot
be relaxed. The results are extended to complex linear maps on the algebra of
bounded linear operators on $H$. Similar results are proved for the (real)
linear space of (selfadjoint) operators of the form $\alpha I+K$, where $\alpha$
is a scalar and $K$ is compact.
Keywords:linear map, selfadjoint operator, invertible, positive definite, numerical range Categories:47B15, 47B49 

398. CMB 2003 (vol 46 pp. 95)
 Gauthier, P. M.

Cercles de remplissage for the Riemann Zeta Function
The celebrated theorem of Picard asserts that each nonconstant entire
function assumes every value infinitely often, with at most one
exception. The Riemann zeta function has this Picard behaviour in a
sequence of discs lying in the critical band and whose diameters tend
to zero. According to the Riemann hypothesis, the value zero would be
this (unique) exceptional value.
Keywords:cercles de remplissage, Riemann zeta function Category:30 

399. CMB 2003 (vol 46 pp. 130)
 Petersen, Peter; Wilhelm, Frederick

On Frankel's Theorem
In this paper we show that two minimal hypersurfaces in a manifold with
positive Ricci curvature must intersect. This is then generalized to show
that in manifolds with positive Ricci curvature in the integral sense two
minimal hypersurfaces must be close to each other. We also show
what happens if a manifold with nonnegative Ricci curvature admits
two nonintersecting minimal hypersurfaces.
Keywords:Frankel's Theorem Category:53C20 

400. CMB 2003 (vol 46 pp. 122)
 Moon, Myoungho

On Certain Finitely Generated Subgroups of Groups Which Split
Define a group $G$ to be in the class $\mathcal{S}$ if for any
finitely generated subgroup $K$ of $G$ having the property that
there is a positive integer $n$ such that $g^n \in K$ for all
$g\in G$, $K$ has finite index in $G$. We show that a free
product with amalgamation $A*_C B$ and an $\HNN$ group $A *_C$ belong
to $\mathcal{S}$, if $C$ is in $\mathcal{S}$ and every subgroup of
$C$ is finitely generated.
Keywords:free product with amalgamation, $\HNN$ group, graph of groups, fundamental group Categories:20E06, 20E08, 57M07 
