Expand all Collapse all  Results 376  400 of 421 
376. CMB 2001 (vol 44 pp. 376)
A Note on $p$Harmonic $1$Forms on Complete Manifolds In this paper we prove that there is no nontrivial $L^{q}$integrably
$p$harmonic $1$form on a complete manifold with nonnegatively Ricci
curvature $(0

377. CMB 2001 (vol 44 pp. 337)
Spectral Transformations of the Laurent Biorthogonal Polynomials, II. Pastro Polynomials We continue to study the simplest closure conditions for chains of
spectral transformations of the Laurent biorthogonal polynomials
($\LBP$). It is shown that the 11periodic $q$closure condition
leads to the $\LBP$ introduced by Pastro. We introduce classes of
semiclassical and LaguerreHahn $\LBP$ associated to generic closure
conditions of the chain of spectral transformations.
Keywords:Laurent orthogonal polynomials, Pastro polynomials, spectral transformations Category:33D45 
378. CMB 2001 (vol 44 pp. 266)
Extension of Maps to Nilpotent Spaces We show that every compactum has cohomological dimension $1$ with respect
to a finitely generated nilpotent group $G$ whenever it has cohomological
dimension $1$ with respect to the abelianization of $G$. This is applied
to the extension theory to obtain a cohomological dimension theory condition
for a finitedimensional compactum $X$ for extendability of every map from
a closed subset of $X$ into a nilpotent $\CW$complex $M$ with finitely
generated homotopy groups over all of $X$.
Keywords:cohomological dimension, extension of maps, nilpotent group, nilpotent space Categories:55M10, 55S36, 54C20, 54F45 
379. CMB 2001 (vol 44 pp. 210)
Growth Estimates on Positive Solutions of the Equation $\Delta u+K u^{\frac{n+2}{n2}}=0$ in $\R^n$ We construct unbounded positive $C^2$solutions of the equation
$\Delta u + K u^{(n + 2)/(n  2)} = 0$ in $\R^n$ (equipped
with Euclidean metric $g_o$) such that $K$ is bounded between two
positive numbers in $\R^n$, the conformal metric $g=u^{4/(n2)}g_o$
is complete, and the volume growth of $g$ can be arbitrarily fast
or reasonably slow according to the constructions. By imposing natural
conditions on $u$, we obtain growth estimate on the $L^{2n/(n2)}$norm
of the solution and show that it has slow decay.
Keywords:positive solution, conformal scalar curvature equation, growth estimate Categories:35J60, 58G03 
380. CMB 2001 (vol 44 pp. 129)
LinÃ©arisation symplectique en dimension 2 In this paper the germ of neighborhood of a compact leaf in a
Lagrangian foliation is symplectically classified when the compact
leaf is $\bT^2$, the affine structure induced by the Lagrangian
foliation on the leaf is complete, and the holonomy of $\bT^2$ in
the foliation linearizes. The germ of neighborhood is classified by a
function, depending on one transverse coordinate, this function is
related to the affine structure of the nearly compact leaves.
Keywords:symplectic manifold, Lagrangian foliation, affine connection Categories:53C12, 58F05 
381. CMB 2001 (vol 44 pp. 126)
Each Copy of the Real Line in $\C^2$ is Removable Around 1995, Professors Lupacciolu, Chirka and Stout showed that a
closed subset of $\C^N$ ($N\geq 2$) is removable for holomorphic
functions, if its topological dimension is less than or equal to
$N2$. Besides, they asked whether closed subsets of $\C^2$
homeomorphic to the real line (the simplest 1dimensional sets) are
removable for holomorphic functions. In this paper we propose a
positive answer to that question.
Keywords:holomorphic function, removable set Category:32D20 
382. CMB 2001 (vol 44 pp. 97)
On the Density of Cyclic Quartic Fields An asymptotic formula is obtained for the number of cyclic quartic fields
over $Q$ with discriminant $\leq x$.
Keywords:cyclic quartic fields, density, discriminant Categories:11R16, 11R29 
383. CMB 2000 (vol 43 pp. 427)
Helices, Hasimoto Surfaces and BÃ¤cklund Transformations Travelling wave solutions to the vortex filament flow generated by
elastica produce surfaces in $\R^3$ that carry mutually orthogonal
foliations by geodesics and by helices. These surfaces are classified
in the special cases where the helices are all congruent or are all
generated by a single screw motion. The first case yields a new
characterization for the B\"acklund transformation for constant
torsion curves in $\R^3$, previously derived from the wellknown
transformation for pseudospherical surfaces. A similar investigation
for surfaces in $H^3$ or $S^3$ leads to a new transformation for
constant torsion curves in those spaces that is also derived from
pseudospherical surfaces.
Keywords:surfaces, filament flow, BÃ¤cklund transformations Categories:53A05, 58F37, 52C42, 58A15 
384. CMB 2000 (vol 43 pp. 496)
Harmonic Polynomials Associated With Reflection Groups We extend Maxwell's representation of harmonic polynomials to $h$harmonics
associated to a reflection invariant weight function $h_k$. Let $\CD_i$,
$1\le i \le d$, be Dunkl's operators associated with a reflection group.
For any homogeneous polynomial $P$ of degree $n$, we prove the
polynomial $\xb^{2 \gamma +d2+2n}P(\CD)\{1/\xb^{2 \gamma +d2}\}$ is
a $h$harmonic polynomial of degree $n$, where $\gamma = \sum k_i$ and
$\CD=(\CD_1,\ldots,\CD_d)$. The construction yields a basis for
$h$harmonics. We also discuss selfadjoint operators acting on the
space of $h$harmonics.
Keywords:$h$harmonics, reflection group, Dunkl's operators Categories:33C50, 33C45 
385. CMB 2000 (vol 43 pp. 440)
On the Existence of a New Class of Contact Metric Manifolds A new class of 3dimensional contact metric manifolds is found.
Moreover it is proved that there are no such manifolds in
dimensions greater than 3.
Keywords:contact metric manifolds, generalized $(\kappa,\mu)$contact metric manifolds Categories:53C25, 53C15 
386. CMB 2000 (vol 43 pp. 418)
Obstructions to $\mathcal{Z}$Stability for Unital Simple $C^*$Algebras Let $\cZ$ be the unital simple nuclear infinite dimensional
$C^*$algebra which has the same Elliott invariant as $\bbC$,
introduced in \cite{JS}. A $C^*$algebra is called $\cZ$stable
if $A \cong A \otimes \cZ$. In this note we give some necessary
conditions for a unital simple $C^*$algebra to be $\cZ$stable.
Keywords:simple $C^*$algebra, $\mathcal{Z}$stability, weak (un)perforation in $K_0$ group, property $\Gamma$, finiteness Category:46L05 
387. CMB 2000 (vol 43 pp. 294)
Fixed Points of Commuting Holomorphic Maps Without Boundary Regularity We identify a class of domains of $\C^n$ in which any two commuting
holomorphic selfmaps have a common fixed point.
Keywords:Holomorphic selfmaps, commuting functions, fixed points, Wolff point, Julia's Lemma Categories:32A10, 32A40, 32H15, 32A30 
388. CMB 2000 (vol 43 pp. 362)
Examples of HalfFactorial Domains In this paper, we determine some sufficient conditions for an $A +
XB[X]$ domain to be an HFD. As a consequence we give new examples
of HFDs of the type $A + XB[X]$.
Keywords:atomic domain, HFD Categories:13A05, 13B30, 13F15, 13G05 
389. CMB 2000 (vol 43 pp. 330)
Maximal Operators and Cantor Sets We consider maximal operators in the plane, defined by Cantor sets of
directions, and show such operators are not bounded on $L^2$ if the
Cantor set has positive Hausdorff dimension.
Keywords:maximal functions, Cantor set, lacunary set Categories:42B25, 43A46 
390. CMB 2000 (vol 43 pp. 268)
Cockcroft Properties of Thompson's Group In a study of the word problem for groups, R.~J.~Thompson
considered a certain group $F$ of selfhomeomorphisms of the Cantor
set and showed, among other things, that $F$ is finitely presented.
Using results of K.~S.~Brown and R.~Geoghegan, M.~N.~Dyer showed
that $F$ is the fundamental group of a finite twocomplex $Z^2$
having Euler characteristic one and which is {\em Cockcroft}, in
the sense that each map of the twosphere into $Z^2$ is
homologically trivial. We show that no proper covering complex of
$Z^2$ is Cockcroft. A general result on Cockcroft properties
implies that no proper regular covering complex of any finite
twocomplex with fundamental group $F$ is Cockcroft.
Keywords:twocomplex, covering space, Cockcroft twocomplex, Thompson's group Categories:57M20, 20F38, 57M10, 20F34 
391. CMB 2000 (vol 43 pp. 3)
Resolutions of Associative and Lie Algebras Certain canonical resolutions are described for free associative and
free Lie algebras in the category of nonassociative algebras. These
resolutions derive in both cases from geometric objects, which in turn
reflect the combinatorics of suitable collections of leaflabeled
trees.
Keywords:resolutions, homology, Lie algebras, associative algebras, nonassociative algebras, Jacobi identity, leaflabeled trees, associahedron Categories:18G10, 05C05, 16S10, 17B01, 17A50, 18G50 
392. CMB 2000 (vol 43 pp. 60)
Trivial Units in Group Rings Let $G$ be an arbitrary group and let $U$ be a subgroup of the
normalized units in $\mathbb{Z}G$. We show that if $U$ contains $G$
as a subgroup of finite index, then $U = G$. This result can be used
to give an alternative proof of a recent result of Marciniak and
Sehgal on units in the integral group ring of a crystallographic group.
Keywords:units, trace, finite conjugate subgroup Categories:16S34, 16U60 
393. CMB 2000 (vol 43 pp. 25)
Subdifferential Regularity of Directionally Lipschitzian Functions Formulas for the Clarke subdifferential are always expressed in the
form of inclusion. The equality form in these formulas generally
requires the functions to be directionally regular. This paper
studies the directional regularity of the general class of
extendedrealvalued functions that are directionally Lipschitzian.
Connections with the concept of subdifferential regularity are also
established.
Keywords:subdifferential regularity, directional regularity, directionally Lipschitzian functions Categories:49J52, 58C20, 49J50, 90C26 
394. CMB 2000 (vol 43 pp. 21)
The Commutant of an Abstract Backward Shift A bounded linear operator $T$ on a Banach space $X$ is an abstract
backward shift if the nullspace of $T$ is one dimensional, and the
union of the null spaces of $T^k$ for all $k \geq 1$ is dense in
$X$. In this paper it is shown that the commutant of an abstract
backward shift is an integral domain. This result is used to
derive properties of operators in the commutant.
Keywords:backward shift, commutant Category:47A99 
395. CMB 1999 (vol 42 pp. 478)
A Remark On the MoserAubin Inequality For Axially Symmetric Functions On the Sphere Let $\scr S_r$ be the collection of all axially symmetric functions
$f$ in the Sobolev space $H^1(\Sph^2)$ such that $\int_{\Sph^2}
x_ie^{2f(\mathbf{x})} \, d\omega(\mathbf{x})$ vanishes for $i=1,2,3$.
We prove that
$$
\inf_{f\in \scr S_r} \frac12 \int_{\Sph^2} \nabla f^2 \, d\omega
+ 2\int_{\Sph^2} f \, d\omega \log \int_{\Sph^2} e^{2f} \, d\omega > \oo,
$$
and that this infimum is attained. This complements recent work of
Feldman, Froese, Ghoussoub and Gui on a conjecture of Chang and Yang
concerning the MoserAubin inequality.
Keywords:Moser inequality, borderline Sobolev inequalities, axially symmetric functions Categories:26D15, 58G30 
396. CMB 1999 (vol 42 pp. 427)
Ramanujan and the Modular $j$Invariant A new infinite product $t_n$ was introduced by S.~Ramanujan on the
last page of his third notebook. In this paper, we prove
Ramanujan's assertions about $t_n$ by establishing new connections
between the modular $j$invariant and Ramanujan's cubic theory of
elliptic functions to alternative bases. We also show that for
certain integers $n$, $t_n$ generates the Hilbert class field of
$\mathbb{Q} (\sqrt{n})$. This shows that $t_n$ is a new class
invariant according to H.~Weber's definition of class invariants.
Keywords:modular functions, the Borweins' cubic thetafunctions, Hilbert class fields Categories:33C05, 33E05, 11R20, 11R29 
397. CMB 1999 (vol 42 pp. 274)
The Bockstein Map is Necessary We construct two nonisomorphic nuclear, stably finite,
real rank zero $C^\ast$algebras $E$ and $E'$ for which
there is an isomorphism of ordered groups
$\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to
\bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible
with all the coefficient transformations. The $C^\ast$algebras
$E$ and $E'$ are not isomorphic since there is no $\Theta$
as above which is also compatible with the Bockstein operations.
By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair
of nonisomorphic, real rank zero, purely infinite $C^\ast$algebras
with similar properties.
Keywords:$K$theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$algebras, real rank zero, purely infinite, classification Categories:46L35, 46L80, 19K14 
398. CMB 1999 (vol 42 pp. 335)
Cyclic Subgroup Separability of HNNExtensions with Cyclic Associated Subgroups We derive a necessary and sufficient condition for HNNextensions
of cyclic subgroup separable groups with cyclic associated
subgroups to be cyclic subgroup separable. Applying this, we
explicitly characterize the residual finiteness and the cyclic
subgroup separability of HNNextensions of abelian groups with
cyclic associated subgroups. We also consider these residual
properties of HNNextensions of nilpotent groups with cyclic
associated subgroups.
Keywords:HNNextension, nilpotent groups, cyclic subgroup separable $(\pi_c)$, residually finite Categories:20E26, 20E06, 20F10 
399. CMB 1999 (vol 42 pp. 321)
Averaging Operators and Martingale Inequalities in Rearrangement Invariant Function Spaces We shall study some connection between averaging operators and
martingale inequalities in rearrangement invariant function spaces.
In Section~2 the equivalence between Shimogaki's theorem and some
martingale inequalities will be established, and in Section~3 the
equivalence between Boyd's theorem and martingale inequalities with
change of probability measure will be established.
Keywords:martingale inequalities, rearrangement invariant function spaces Categories:60G44, 60G46, 46E30 
400. CMB 1999 (vol 42 pp. 285)
On Kloosterman Sums with Oscillating Coefficients In this paper we prove: for any positive integers $a$ and $q$ with
$(a,q) =1$, we have uniformly
$$
\sum_{\substack{n \leq N \\ (n,q) = 1, \,n\on \equiv 1 (\mod q)}}
\mu (n) e \left( \frac{a\on}{q} \right) \ll Nd (q) \left\{
\frac{\log^{\frac52} N}{q^{\frac12}} + \frac{q^{\frac15}
\log^{\frac{13}5} N}{N^{\frac15}} \right\}.
$$
This improves the previous bound obtained by D.~Hajela,
A.~Pollington and B.~Smith~\cite{5}.
Keywords:Kloosterman sums, oscillating coefficients, estimate Category:10G10 