CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword f

  Expand all        Collapse all Results 351 - 375 of 421

351. CMB 2003 (vol 46 pp. 617)

Pak, Hong Kyung
On Harmonic Theory in Flows
Recently [8], a harmonic theory was developed for a compact contact manifold from the viewpoint of the transversal geometry of contact flow. A contact flow is a typical example of geodesible flow. As a natural generalization of the contact flow, the present paper develops a harmonic theory for various flows on compact manifolds. We introduce the notions of $H$-harmonic and $H^*$-harmonic spaces associated to a H\"ormander flow. We also introduce the notions of basic harmonic spaces associated to a weak basic flow. One of our main results is to show that in the special case of isometric flow these harmonic spaces are isomorphic to the cohomology spaces of certain complexes. Moreover, we find an obstruction for a geodesible flow to be isometric.

Keywords:contact structure, geodesible flow, isometric flow, basic cohomology
Categories:53C20, 57R30

352. CMB 2003 (vol 46 pp. 632)

Runde, Volker
The Operator Amenability of Uniform Algebras
We prove a quantized version of a theorem by M.~V.~She\u{\i}nberg: A uniform algebra equipped with its canonical, {\it i.e.}, minimal, operator space structure is operator amenable if and only if it is a commutative $C^\ast$-algebra.

Keywords:uniform algebras, amenable Banach algebras, operator amenability, minimal, operator space
Categories:46H20, 46H25, 46J10, 46J40, 47L25

353. CMB 2003 (vol 46 pp. 373)

Laugesen, Richard S.; Pritsker, Igor E.
Potential Theory of the Farthest-Point Distance Function
We study the farthest-point distance function, which measures the distance from $z \in \mathbb{C}$ to the farthest point or points of a given compact set $E$ in the plane. The logarithm of this distance is subharmonic as a function of $z$, and equals the logarithmic potential of a unique probability measure with unbounded support. This measure $\sigma_E$ has many interesting properties that reflect the topology and geometry of the compact set $E$. We prove $\sigma_E(E) \leq \frac12$ for polygons inscribed in a circle, with equality if and only if $E$ is a regular $n$-gon for some odd $n$. Also we show $\sigma_E(E) = \frac12$ for smooth convex sets of constant width. We conjecture $\sigma_E(E) \leq \frac12$ for all~$E$.

Keywords:distance function, farthest points, subharmonic function, representing measure, convex bodies of constant width
Categories:31A05, 52A10, 52A40

354. CMB 2003 (vol 46 pp. 216)

Li, Chi-Kwong; Rodman, Leiba; Šemrl, Peter
Linear Maps on Selfadjoint Operators Preserving Invertibility, Positive Definiteness, Numerical Range
Let $H$ be a complex Hilbert space, and $\HH$ be the real linear space of bounded selfadjoint operators on $H$. We study linear maps $\phi\colon \HH \to \HH$ leaving invariant various properties such as invertibility, positive definiteness, numerical range, {\it etc}. The maps $\phi$ are not assumed {\it a priori\/} continuous. It is shown that under an appropriate surjective or injective assumption $\phi$ has the form $X \mapsto \xi TXT^*$ or $X \mapsto \xi TX^tT^*$, for a suitable invertible or unitary $T$ and $\xi\in\{1, -1\}$, where $X^t$ stands for the transpose of $X$ relative to some orthonormal basis. Examples are given to show that the surjective or injective assumption cannot be relaxed. The results are extended to complex linear maps on the algebra of bounded linear operators on $H$. Similar results are proved for the (real) linear space of (selfadjoint) operators of the form $\alpha I+K$, where $\alpha$ is a scalar and $K$ is compact.

Keywords:linear map, selfadjoint operator, invertible, positive definite, numerical range
Categories:47B15, 47B49

355. CMB 2003 (vol 46 pp. 310)

Wang, Xiaofeng
Second Order Dehn Functions of Asynchronously Automatic Groups
Upper bounds of second order Dehn functions of asynchronously automatic groups are obtained.

Keywords:second order Dehn function, combing, asynchronously automatic group
Categories:20E06, 20F05, 57M05

356. CMB 2003 (vol 46 pp. 268)

Puls, Michael J.
Group Cohomology and $L^p$-Cohomology of Finitely Generated Groups
Let $G$ be a finitely generated, infinite group, let $p>1$, and let $L^p(G)$ denote the Banach space $\{ \sum_{x\in G} a_xx \mid \sum_{x\in G} |a_x |^p < \infty \}$. In this paper we will study the first cohomology group of $G$ with coefficients in $L^p(G)$, and the first reduced $L^p$-cohomology space of $G$. Most of our results will be for a class of groups that contains all finitely generated, infinite nilpotent groups.

Keywords:group cohomology, $L^p$-cohomology, central element of infinite order, harmonic function, continuous linear functional
Categories:43A15, 20F65, 20F18

357. CMB 2003 (vol 46 pp. 265)

Oh, Seungsang
Reducing Spheres and Klein Bottles after Dehn Fillings
Let $M$ be a compact, connected, orientable, irreducible 3-manifold with a torus boundary. It is known that if two Dehn fillings on $M$ along the boundary produce a reducible manifold and a manifold containing a Klein bottle, then the distance between the filling slopes is at most three. This paper gives a remarkably short proof of this result.

Keywords:Dehn filling, reducible, Klein bottle
Category:57M50

358. CMB 2003 (vol 46 pp. 95)

Gauthier, P. M.
Cercles de remplissage for the Riemann Zeta Function
The celebrated theorem of Picard asserts that each non-constant entire function assumes every value infinitely often, with at most one exception. The Riemann zeta function has this Picard behaviour in a sequence of discs lying in the critical band and whose diameters tend to zero. According to the Riemann hypothesis, the value zero would be this (unique) exceptional value.

Keywords:cercles de remplissage, Riemann zeta function
Category:30

359. CMB 2003 (vol 46 pp. 130)

Petersen, Peter; Wilhelm, Frederick
On Frankel's Theorem
In this paper we show that two minimal hypersurfaces in a manifold with positive Ricci curvature must intersect. This is then generalized to show that in manifolds with positive Ricci curvature in the integral sense two minimal hypersurfaces must be close to each other. We also show what happens if a manifold with nonnegative Ricci curvature admits two nonintersecting minimal hypersurfaces.

Keywords:Frankel's Theorem
Category:53C20

360. CMB 2003 (vol 46 pp. 122)

Moon, Myoungho
On Certain Finitely Generated Subgroups of Groups Which Split
Define a group $G$ to be in the class $\mathcal{S}$ if for any finitely generated subgroup $K$ of $G$ having the property that there is a positive integer $n$ such that $g^n \in K$ for all $g\in G$, $K$ has finite index in $G$. We show that a free product with amalgamation $A*_C B$ and an $\HNN$ group $A *_C$ belong to $\mathcal{S}$, if $C$ is in $\mathcal{S}$ and every subgroup of $C$ is finitely generated.

Keywords:free product with amalgamation, $\HNN$ group, graph of groups, fundamental group
Categories:20E06, 20E08, 57M07

361. CMB 2002 (vol 45 pp. 483)

Baake, Michael
Diffraction of Weighted Lattice Subsets
A Dirac comb of point measures in Euclidean space with bounded complex weights that is supported on a lattice $\varGamma$ inherits certain general properties from the lattice structure. In particular, its autocorrelation admits a factorization into a continuous function and the uniform lattice Dirac comb, and its diffraction measure is periodic, with the dual lattice $\varGamma^*$ as lattice of periods. This statement remains true in the setting of a locally compact Abelian group whose topology has a countable base.

Keywords:diffraction, Dirac combs, lattice subsets, homometric sets
Categories:52C07, 43A25, 52C23, 43A05

362. CMB 2002 (vol 45 pp. 428)

Mollin, R. A.
Criteria for Simultaneous Solutions of $X^2 - DY^2 = c$ and $x^2 - Dy^2 = -c$
The purpose of this article is to provide criteria for the simultaneous solvability of the Diophantine equations $X^2 - DY^2 = c$ and $x^2 - Dy^2 = -c$ when $c \in \mathbb{Z}$, and $D \in \mathbb{N}$ is not a perfect square. This continues work in \cite{me}--\cite{alfnme}.

Keywords:continued fractions, Diophantine equations, fundamental units, simultaneous solutions
Categories:11A55, 11R11, 11D09

363. CMB 2002 (vol 45 pp. 337)

Chen, Imin
Surjectivity of $\mod\ell$ Representations Attached to Elliptic Curves and Congruence Primes
For a modular elliptic curve $E/\mathbb{Q}$, we show a number of links between the primes $\ell$ for which the mod $\ell$ representation of $E/\mathbb{Q}$ has projective dihedral image and congruence primes for the newform associated to $E/\mathbb{Q}$.

Keywords:torsion points of elliptic curves, Galois representations, congruence primes, Serre tori, grossencharacters, non-split Cartan
Categories:11G05, 11F80

364. CMB 2002 (vol 45 pp. 378)

Fernández-López, Manuel; García-Río, Eduardo; Kupeli, Demir N.
The Local Möbius Equation and Decomposition Theorems in Riemannian Geometry
A partial differential equation, the local M\"obius equation, is introduced in Riemannian geometry which completely characterizes the local twisted product structure of a Riemannian manifold. Also the characterizations of warped product and product structures of Riemannian manifolds are made by the local M\"obius equation and an additional partial differential equation.

Keywords:submersion, Möbius equation, twisted product, warped product, product Riemannian manifolds
Categories:53C12, 58J99

365. CMB 2002 (vol 45 pp. 161)

Ardizzone, Lucia; Grimaldi, Renata; Pansu, Pierre
Sur les singularités de la fonction croissance d'une variété non simplement connexe
Si $M$ est une vari\'et\'e de dimension $n$, compacte non simplement connexe, on caract\'erise les m\'etriques riemanniennes sur $M$ dont la fonction croissance a exactement deux singularit\'es.

Keywords:fonction croissance, singularités, fonction de Morse, Cutlocus
Category:53B20

366. CMB 2002 (vol 45 pp. 272)

Neusel, Mara D.
The Transfer in the Invariant Theory of Modular Permutation Representations II
In this note we show that the image of the transfer for permutation representations of finite groups is generated by the transfers of special monomials. This leads to a description of the image of the transfer of the alternating groups. We also determine the height of these ideals.

Keywords:polynomial invariants of finite groups, permutation representation, transfer
Category:13A50

367. CMB 2002 (vol 45 pp. 265)

Nawrocki, Marek
On the Smirnov Class Defined by the Maximal Function
H.~O.~Kim has shown that contrary to the case of $H^p$-space, the Smirnov class $M$ defined by the radial maximal function is essentially smaller than the classical Smirnov class of the disk. In the paper we show that these two classes have the same corresponding locally convex structure, {\it i.e.} they have the same dual spaces and the same Fr\'echet envelopes. We describe a general form of a continuous linear functional on $M$ and multiplier from $M$ into $H^p$, $0 < p \leq \infty$.

Keywords:Smirnov class, maximal radial function, multipliers, dual space, Fréchet envelope
Categories:46E10, 30A78, 30A76

368. CMB 2002 (vol 45 pp. 213)

Gordon, B. Brent; Joshi, Kirti
Griffiths Groups of Supersingular Abelian Varieties
The Griffiths group $\Gr^r(X)$ of a smooth projective variety $X$ over an algebraically closed field is defined to be the group of homologically trivial algebraic cycles of codimension $r$ on $X$ modulo the subgroup of algebraically trivial algebraic cycles. The main result of this paper is that the Griffiths group $\Gr^2 (A_{\bar{k}})$ of a supersingular abelian variety $A_{\bar{k}}$ over the algebraic closure of a finite field of characteristic $p$ is at most a $p$-primary torsion group. As a corollary the same conclusion holds for supersingular Fermat threefolds. In contrast, using methods of C.~Schoen it is also shown that if the Tate conjecture is valid for all smooth projective surfaces and all finite extensions of the finite ground field $k$ of characteristic $p>2$, then the Griffiths group of any ordinary abelian threefold $A_{\bar{k}}$ over the algebraic closure of $k$ is non-trivial; in fact, for all but a finite number of primes $\ell\ne p$ it is the case that $\Gr^2 (A_{\bar{k}}) \otimes \Z_\ell \neq 0$.

Keywords:Griffiths group, Beauville conjecture, supersingular Abelian variety, Chow group
Categories:14J20, 14C25

369. CMB 2002 (vol 45 pp. 154)

Weitsman, Allen
On the Poisson Integral of Step Functions and Minimal Surfaces
Applications of minimal surface methods are made to obtain information about univalent harmonic mappings. In the case where the mapping arises as the Poisson integral of a step function, lower bounds for the number of zeros of the dilatation are obtained in terms of the geometry of the image.

Keywords:harmonic mappings, dilatation, minimal surfaces
Categories:30C62, 31A05, 31A20, 49Q05

370. CMB 2002 (vol 45 pp. 138)

Spearman, Blair K.; Williams, Kenneth S.
The Discriminant of a Dihedral Quintic Field Defined by a Trinomial $X^5 + aX + b$
Let $X^5 + aX + b \in Z[X]$ have Galois group $D_5$. Let $\theta$ be a root of $X^5 + aX + b$. An explicit formula is given for the discriminant of $Q(\theta)$.

Keywords:dihedral quintic field, trinomial, discriminant
Categories:11R21, 11R29

371. CMB 2002 (vol 45 pp. 109)

Hall, R. R.; Shiu, P.
The Distribution of Totatives
D.~H.~Lehmer initiated the study of the distribution of totatives, which are numbers coprime with a given integer. This led to various problems considered by P.~Erd\H os, who made a conjecture on such distributions. We prove his conjecture by establishing a theorem on the ordering of residues.

Keywords:Euler's function, totatives
Categories:11A05, 11A07, 11A25

372. CMB 2002 (vol 45 pp. 97)

Haas, Andrew
Invariant Measures and Natural Extensions
We study ergodic properties of a family of interval maps that are given as the fractional parts of certain real M\"obius transformations. Included are the maps that are exactly $n$-to-$1$, the classical Gauss map and the Renyi or backward continued fraction map. A new approach is presented for deriving explicit realizations of natural automorphic extensions and their invariant measures.

Keywords:Continued fractions, interval maps, invariant measures
Categories:11J70, 58F11, 58F03

373. CMB 2001 (vol 44 pp. 398)

Cardon, David A.; Ram Murty, M.
Exponents of Class Groups of Quadratic Function Fields over Finite Fields
We find a lower bound on the number of imaginary quadratic extensions of the function field $\F_q(T)$ whose class groups have an element of a fixed order. More precisely, let $q \geq 5$ be a power of an odd prime and let $g$ be a fixed positive integer $\geq 3$. There are $\gg q^{\ell (\frac{1}{2}+\frac{1}{g})}$ polynomials $D \in \F_q[T]$ with $\deg(D) \leq \ell$ such that the class groups of the quadratic extensions $\F_q(T,\sqrt{D})$ have an element of order~$g$.

Keywords:class number, quadratic function field
Categories:11R58, 11R29

374. CMB 2001 (vol 44 pp. 504)

Zhang, Yong
Weak Amenability of a Class of Banach Algebras
We show that, if a Banach algebra $\A$ is a left ideal in its second dual algebra and has a left bounded approximate identity, then the weak amenability of $\A$ implies the ($2m+1$)-weak amenability of $\A$ for all $m\geq 1$.

Keywords:$n$-weak amenability, left ideals, left bounded approximate identity
Categories:46H20, 46H10, 46H25

375. CMB 2001 (vol 44 pp. 323)

Schuman, Bertrand
Une classe d'hamiltoniens polynomiaux isochrones
Soit $H_0 = \frac{x^2+y^2}{2}$ un hamiltonien isochrone du plan $\Rset^2$. On met en \'evidence une classe d'hamiltoniens isochrones qui sont des perturbations polynomiales de $H_0$. On obtient alors une condition n\'ecessaire d'isochronisme, et un crit\`ere de choix pour les hamiltoniens isochrones. On voit ce r\'esultat comme \'etant une g\'en\'eralisation du caract\`ere isochrone des perturbations hamiltoniennes homog\`enes consid\'er\'ees dans [L], [P], [S]. Let $H_0 = \frac{x^2+y^2}{2}$ be an isochronous Hamiltonian of the plane $\Rset^2$. We obtain a necessary condition for a system to be isochronous. We can think of this result as a generalization of the isochronous behaviour of the homogeneous polynomial perturbation of the Hamiltonian $H_0$ considered in [L], [P], [S].

Keywords:Hamiltonian system, normal forms, resonance, linearization
Categories:34C20, 58F05, 58F22, 58F30
Page
   1 ... 14 15 16 17    

© Canadian Mathematical Society, 2014 : https://cms.math.ca/