CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword f

  Expand all        Collapse all Results 1 - 25 of 495

1. CMB Online first

Dimca, Alexandru
The Poincaré-Deligne polynomial of Milnor fibers of triple point line arrangements is combinatorially determined
Using a recent result by S. Papadima and A. Suciu, we show that the equivariant Poincaré-Deligne polynomial of the Milnor fiber of a projective line arrangement having only double and triple points is combinatorially determined.

Keywords:line arrangement, Milnor fiber, monodromy, mixed Hodge structures
Categories:32S22, 32S35, 32S25, 32S55

2. CMB Online first

Feng, Zhaosheng; Jiang, Yongxin; Wang, Wei
Spatial Homogenization of Stochastic Wave Equation with Large Interaction
A dynamical approximation of a stochastic wave equation with large interaction is derived. A random invariant manifold is discussed. By a key linear transformation, the random invariant manifold is shown to be close to the random invariant manifold of a second-order stochastic ordinary differential equation.

Keywords:stochastic wave equation, homogeneous system, approximation, random invariant manifold, Neumann boundary condition
Categories:60F10, 60H15, 35Q55

3. CMB Online first

Zargar, Majid Rahro; Zakeri, Hossein
On flat and Gorenstein flat dimensions of local cohomology modules
Let $\mathfrak{a}$ be an ideal of a Noetherian local ring $R$ and let $C$ be a semidualizing $R$-module. For an $R$-module $X$, we denote any of the quantities $\mathfrak{d}_R X$, $\operatorname{\mathsf{Gfd}}_R X$ and $\operatorname{\mathsf{G_C-fd}}_RX$ by $\operatorname{\mathsf{T}}(X)$. Let $M$ be an $R$-module such that $\operatorname{H}_{\mathfrak{a}}^i(M)=0$ for all $i\neq n$. It is proved that if $\operatorname{\mathsf{T}}(X)\lt \infty$, then $\operatorname{\mathsf{T}}(\operatorname{H}_{\mathfrak{a}}^n(M))\leq\operatorname{\mathsf{T}}(M)+n$ and the equality holds whenever $M$ is finitely generated. With the aid of these results, among other things, we characterize Cohen-Macaulay modules, dualizing modules and Gorenstein rings.

Keywords:flat dimension, Gorenstein injective dimension, Gorenstein flat dimension, local cohomology, relative Cohen-Macaulay module, semidualizing module
Categories:13D05, 13D45, 18G20

4. CMB Online first

Atıcı, Ferhan M.; Yaldız, Hatice
Convex Functions on Discrete Time Domains
In this paper, we introduce the definition of a convex real valued function $f$ defined on the set of integers, ${\mathbb{Z}}$. We prove that $f$ is convex on ${\mathbb{Z}}$ if and only if $\Delta^{2}f \geq 0$ on ${\mathbb{Z}}$. As a first application of this new concept, we state and prove discrete Hermite-Hadamard inequality using the basics of discrete calculus (i.e. the calculus on ${\mathbb{Z}}$). Second, we state and prove the discrete fractional Hermite-Hadamard inequality using the basics of discrete fractional calculus. We close the paper by defining the convexity of a real valued function on any time scale.

Keywords:discrete calculus, discrete fractional calculus, convex functions, discrete Hermite-Hadamard inequality
Categories:26B25, 26A33, 39A12, 39A70, 26E70, 26D07, 26D10, 26D15

5. CMB Online first

Krantz, Steven
On a theorem of Bers, with applications to the study of automorphism groups of domains
We study and generalize a classical theorem of L. Bers that classifies domains up to biholomorphic equivalence in terms of the algebras of holomorphic functions on those domains. Then we develop applications of these results to the study of domains with noncompact automorphism group.

Keywords:Bers's theorem, algebras of holomorphic functions, noncompact automorphism group, biholomorphic equivalence
Categories:32A38, 30H50, 32A10, 32M99

6. CMB Online first

Prajapati, S. K.; Sarma, R.
Total Character of a group $G$ with $(G,Z(G))$ as a generalized Camina pair
We investigate whether the total character of a finite group $G$ is a polynomial in a suitable irreducible character of $G$. When $(G,Z(G))$ is a generalized Camina pair, we show that the total character is a polynomial in a faithful irreducible character of $G$ if and only if $Z(G)$ is cyclic.

Keywords:finite groups, group characters, total characters
Category:20C15

7. CMB Online first

Ilten, Nathan; Teitler, Zach
Product Ranks of the $3\times 3$ Determinant and Permanent
We show that the product rank of the $3 \times 3$ determinant $\det_3$ is $5$, and the product rank of the $3 \times 3$ permanent $\operatorname{perm}_3$ is $4$. As a corollary, we obtain that the tensor rank of $\det_3$ is $5$ and the tensor rank of $\operatorname{perm}_3$ is $4$. We show moreover that the border product rank of $\operatorname{perm}_n$ is larger than $n$ for any $n\geq 3$.

Keywords:product rank, tensor rank, determinant, permanent, Fano schemes
Categories:15A21, 15A69, 14M12, 14N15

8. CMB Online first

Nicola, Antonio De; Yudin, Ivan
Generalized Goldberg Formula
In this paper we prove a useful formula for the graded commutator of the Hodge codifferential with the left wedge multiplication by a fixed $p$-form acting on the de Rham algebra of a Riemannian manifold. Our formula generalizes a formula stated by Samuel I. Goldberg for the case of 1-forms. As first examples of application we obtain new identities on locally conformally Kähler manifolds and quasi-Sasakian manifolds. Moreover, we prove that under suitable conditions a certain subalgebra of differential forms in a compact manifold is quasi-isomorphic as a CDGA to the full de Rham algebra.

Keywords:graded commutator, Hodge codifferential, Hodge laplacian, de Rham cohomology, locally conformal Kaehler manifold, quasi-Sasakian manifold
Categories:53C25, 53D35

9. CMB Online first

Li, Dan; Ma, Wanbiao
Dynamical Analysis of a Stage-Structured Model for Lyme Disease with two delays
In this paper, a nonlinear stage-structured model for Lyme disease is considered. The model is a system of differential equations with two time delays. The basic reproductive rate, $R_0(\tau_1,\tau_2)$, is derived. If $R_0(\tau_1,\tau_2)\lt 1$, then the boundary equilibrium is globally asymptotically stable. If $R_0(\tau_1,\tau_2)\gt 1$, then there exists a unique positive equilibrium whose local asymptotical stability and the existence of Hopf bifurcations are established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions is derived by using the normal form and the center manifold theory. Some numerical simulations are performed to confirm the correctness of theoretical analysis. At last, some conclusions are given.

Keywords:Lyme disease, stage-structure, time delay, Lyapunov functional stability Hopf bifurcation.
Category:34D20

10. CMB Online first

Ara, Pere; O'Meara, Kevin C.
The Nilpotent Regular Element Problem
We use George Bergman's recent normal form for universally adjoining an inner inverse to show that, for general rings, a nilpotent regular element $x$ need not be unit-regular. This contrasts sharply with the situation for nilpotent regular elements in exchange rings (a large class of rings), and for general rings when all powers of the nilpotent element $x$ are regular.

Keywords:nilpotent element, von Neumann regular element, unit-regular, Bergman's normal form
Categories:16E50, 16U99, 16S10, 16S15

11. CMB Online first

Kachmar, Ayman
A new formula for the energy of bulk superconductivity
The energy of a type II superconductor submitted to an external magnetic field of intensity close to the second critical field is given by the celebrated Abrikosov energy. If the external magnetic field is comparable to and below the second critical field, the energy is given by a reference function obtained as a special (thermodynamic) limit of a non-linear energy. In this note, we give a new formula for this reference energy. In particular, we obtain it as a special limit of a linear energy defined over configurations normalized in the $L^4$-norm.

Keywords:Ginzburg-Landau functional
Categories:35B40, 35P15, 35Q56

12. CMB 2015 (vol 59 pp. 73)

Gasiński, Leszek; Papageorgiou, Nikolaos S.
Positive Solutions for the Generalized Nonlinear Logistic Equations
We consider a nonlinear parametric elliptic equation driven by a nonhomogeneous differential operator with a logistic reaction of the superdiffusive type. Using variational methods coupled with suitable truncation and comparison techniques, we prove a bifurcation type result describing the set of positive solutions as the parameter varies.

Keywords:positive solution, bifurcation type result, strong comparison principle, nonlinear regularity, nonlinear maximum principle
Categories:35J25, 35J92

13. CMB Online first

Yao, Hongliang
On Extensions of Stably Finite C-Algebras (II)
For any $C^*$-algebra $A$ with an approximate unit of projections, there is a smallest ideal $I$ of $A$ such that the quotient $A/I$ is stably finite. In this paper, a sufficient and necessary condition is obtained for an ideal of a $C^*$-algebra with real rank zero is this smallest ideal by $K$-theory.

Keywords:extension, stably finite C*-algebra, index map
Categories:46L05, 46L80

14. CMB 2015 (vol 59 pp. 170)

Martínez-Pedroza, Eduardo
A Note on Fine Graphs and Homological Isoperimetric Inequalities
In the framework of homological characterizations of relative hyperbolicity, Groves and Manning posed the question of whether a simply connected $2$-complex $X$ with a linear homological isoperimetric inequality, a bound on the length of attaching maps of $2$-cells and finitely many $2$-cells adjacent to any edge must have a fine $1$-skeleton. We provide a positive answer to this question. We revisit a homological characterization of relative hyperbolicity, and show that a group $G$ is hyperbolic relative to a collection of subgroups $\mathcal P$ if and only if $G$ acts cocompactly with finite edge stabilizers on an connected $2$-dimensional cell complex with a linear homological isoperimetric inequality and $\mathcal P$ is a collection of representatives of conjugacy classes of vertex stabilizers.

Keywords:isoperimetric functions, Dehn functions, hyperbolic groups
Categories:20F67, 05C10, 20J05, 57M60

15. CMB 2015 (vol 59 pp. 197)

Rajaee, Saeed
Quasi-copure Submodules
All rings are commutative with identity and all modules are unital. In this paper we introduce the concept of quasi-copure submodule of a multiplication $R$-module $M$ and will give some results of them. We give some properties of tensor product of finitely generated faithful multiplication modules.

Keywords:multiplication module, arithmetical ring, copure submodule, radical of submodules
Categories:13A15, 13C05, 13C13, , 13C99

16. CMB 2015 (vol 59 pp. 123)

Jensen, Gerd; Pommerenke, Christian
Discrete Space-time and Lorentz Transformations
Alfred Schild has established conditions that Lorentz transformations map world-vectors $(ct,x,y,z)$ with integer coordinates onto vectors of the same kind. The problem was dealt with in the context of tensor and spinor calculus. Due to Schild's number-theoretic arguments, the subject is also interesting when isolated from its physical background. The paper of Schild is not easy to understand. Therefore we first present a streamlined version of his proof which is based on the use of null vectors. Then we present a purely algebraic proof that is somewhat shorter. Both proofs rely on the properties of Gaussian integers.

Keywords:Lorentz transformation, integer lattice, Gaussian integers
Categories:22E43, 20H99, 83A05

17. CMB Online first

Jiang, Chunlan; Shi, Rui
On the uniqueness of Jordan canonical form decompositions of operators by $K$-theoretical data
In this paper, we develop a generalized Jordan canonical form theorem for a certain class of operators in $\mathcal {L}(\mathcal {H})$. A complete criterion for similarity for this class of operators in terms of $K$-theory for Banach algebras is given.

Keywords:strongly irreducible operator, similarity invariant, reduction theory of von Neumann algebras, $K$-theory
Categories:47A15, 47C15, 47A65

18. CMB Online first

Beardon, Alan F.
Non-discrete frieze groups
The classification of Euclidean frieze groups into seven conjugacy classes is well known, and many articles on recreational mathematics contain frieze patterns that illustrate these classes. However, it is only possible to draw these patterns because the subgroup of translations that leave the pattern invariant is (by definition) cyclic, and hence discrete. In this paper we classify the conjugacy classes of frieze groups that contain a non-discrete subgroup of translations, and clearly these groups cannot be represented pictorially in any practical way. In addition, this discussion sheds light on why there are only seven conjugacy classes in the classical case.

Keywords:frieze groups, isometry groups
Categories:51M04, 51N30, 20E45

19. CMB 2015 (vol 58 pp. 818)

Llibre, Jaume; Zhang, Xiang
On the Limit Cycles of Linear Differential Systems with Homogeneous Nonlinearities
We consider the class of polynomial differential systems of the form $\dot x= \lambda x-y+P_n(x,y)$, $\dot y=x+\lambda y+ Q_n(x,y),$ where $P_n$ and $Q_n$ are homogeneous polynomials of degree $n$. For this class of differential systems we summarize the known results for the existence of limit cycles, and we provide new results for their nonexistence and existence.

Keywords:polynomial differential system, limit cycles, differential equations on the cylinder
Categories:34C35, 34D30

20. CMB 2015 (vol 58 pp. 704)

Benamar, H.; Chandoul, A.; Mkaouar, M.
On the Continued Fraction Expansion of Fixed Period in Finite Fields
The Chowla conjecture states that, if $t$ is any given positive integer, there are infinitely many prime positive integers $N$ such that $\operatorname{Per} (\sqrt{N})=t$, where $\operatorname{Per} (\sqrt{N})$ is the period length of the continued fraction expansion for $\sqrt{N}$. C. Friesen proved that, for any $k\in \mathbb{N}$, there are infinitely many square-free integers $N$, where the continued fraction expansion of $\sqrt{N}$ has a fixed period. In this paper, we describe all polynomials $Q\in \mathbb{F}_q[X] $ for which the continued fraction expansion of $\sqrt {Q}$ has a fixed period, also we give a lower bound of the number of monic, non-squares polynomials $Q$ such that $\deg Q= 2d$ and $ Per \sqrt {Q}=t$.

Keywords:continued fractions, polynomials, formal power series
Categories:11A55, 13J05

21. CMB 2015 (vol 58 pp. 799)

Kong, Qingjun; Guo, Xiuyun
On $s$-semipermutable or $s$-quasinormally Embedded Subgroups of Finite Groups
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-semipermutable in $G$ if $HG_{p}=G_{p}H$ for any Sylow $p$-subgroup $G_{p}$ of $G$ with $(p,|H|)=1$; $H$ is said to be $s$-quasinormally embedded in $G$ if for each prime $p$ dividing the order of $H$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-quasinormal subgroup of $G$. We fix in every non-cyclic Sylow subgroup $P$ of $G$ some subgroup $D$ satisfying $1\lt |D|\lt |P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is either $s$-semipermutable or $s$-quasinormally embedded in $G$. Some recent results are generalized and unified.

Keywords:$s$-semipermutable subgroup, $s$-quasinormally embedded subgroup, saturated formation.
Categories:20D10, 20D20

22. CMB 2015 (vol 58 pp. 741)

Gao, Zenghui
Homological Properties Relative to Injectively Resolving Subcategories
Let $\mathcal{E}$ be an injectively resolving subcategory of left $R$-modules. A left $R$-module $M$ (resp. right $R$-module $N$) is called $\mathcal{E}$-injective (resp. $\mathcal{E}$-flat) if $\operatorname{Ext}_R^1(G,M)=0$ (resp. $\operatorname{Tor}_1^R(N,G)=0$) for any $G\in\mathcal{E}$. Let $\mathcal{E}$ be a covering subcategory. We prove that a left $R$-module $M$ is $\mathcal{E}$-injective if and only if $M$ is a direct sum of an injective left $R$-module and a reduced $\mathcal{E}$-injective left $R$-module. Suppose $\mathcal{F}$ is a preenveloping subcategory of right $R$-modules such that $\mathcal{E}^+\subseteq\mathcal{F}$ and $\mathcal{F}^+\subseteq\mathcal{E}$. It is shown that a finitely presented right $R$-module $M$ is $\mathcal{E}$-flat if and only if $M$ is a cokernel of an $\mathcal{F}$-preenvelope of a right $R$-module. In addition, we introduce and investigate the $\mathcal{E}$-injective and $\mathcal{E}$-flat dimensions of modules and rings. We also introduce $\mathcal{E}$-(semi)hereditary rings and $\mathcal{E}$-von Neumann regular rings and characterize them in terms of $\mathcal{E}$-injective and $\mathcal{E}$-flat modules.

Keywords:injectively resolving subcategory, \mathcal{E}-injective module (dimension), \mathcal{E}-flat module (dimension), cover, preenvelope, \mathcal{E}-(semi)hereditary ring
Categories:16E30, 16E10, 16E60

23. CMB 2015 (vol 59 pp. 104)

He, Ziyi; Yang, Dachun; Yuan, Wen
Littlewood-Paley Characterizations of Second-Order Sobolev Spaces via Averages on Balls
In this paper, the authors characterize second-order Sobolev spaces $W^{2,p}({\mathbb R}^n)$, with $p\in [2,\infty)$ and $n\in\mathbb N$ or $p\in (1,2)$ and $n\in\{1,2,3\}$, via the Lusin area function and the Littlewood-Paley $g_\lambda^\ast$-function in terms of ball means.

Keywords:Sobolev space, ball means, Lusin-area function, $g_\lambda^*$-function
Categories:46E35, 42B25, 42B20, 42B35

24. CMB 2015 (vol 58 pp. 824)

Luo, Xiu-Hua
Exact Morphism Category and Gorenstein-projective Representations
Let $Q$ be a finite acyclic quiver, $J$ be an ideal of $kQ$ generated by all arrows in $Q$, $A$ be a finite-dimensional $k$-algebra. The category of all finite-dimensional representations of $(Q, J^2)$ over $A$ is denoted by $\operatorname{rep}(Q, J^2, A)$. In this paper, we introduce the category $\operatorname{exa}(Q,J^2,A)$, which is a subcategory of $\operatorname{rep}{}(Q,J^2,A)$ of all exact representations. The main result of this paper explicitly describes the Gorenstein-projective representations in $\operatorname{rep}{}(Q,J^2,A)$, via the exact representations plus an extra condition. As a corollary, $A$ is a self-injective algebra, if and only if the Gorenstein-projective representations are exactly the exact representations of $(Q, J^2)$ over $A$.

Keywords:representations of a quiver over an algebra, exact representations, Gorenstein-projective modules
Category:18G25

25. CMB 2015 (vol 58 pp. 673)

Achter, Jeffrey; Williams, Cassandra
Local Heuristics and an Exact Formula for Abelian Surfaces Over Finite Fields
Consider a quartic $q$-Weil polynomial $f$. Motivated by equidistribution considerations, we define, for each prime $\ell$, a local factor that measures the relative frequency with which $f\bmod \ell$ occurs as the characteristic polynomial of a symplectic similitude over $\mathbb{F}_\ell$. For a certain class of polynomials, we show that the resulting infinite product calculates the number of principally polarized abelian surfaces over $\mathbb{F}_q$ with Weil polynomial $f$.

Keywords:abelian surfaces, finite fields, random matrices
Category:14K02
Page
   1 2 3 4 ... 20    

© Canadian Mathematical Society, 2016 : https://cms.math.ca/