CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword f

  Expand all        Collapse all Results 1 - 25 of 563

1. CMB Online first

Buijs, Urtzi; Félix, Yves; Murillo, Aniceto; Tanré, Daniel
Maurer-Cartan elements in the Lie models of finite simplicial complexes
In a previous work, we have associated a complete differential graded Lie algebra to any finite simplicial complex in a functorial way. Similarly, we have also a realization functor from the category of complete differential graded Lie algebras to the category of simplicial sets. We have already interpreted the homology of a Lie algebra in terms of homotopy groups of its realization. In this paper, we begin a dictionary between models and simplicial complexes by establishing a correspondence between the Deligne groupoid of the model and the connected components of the finite simplicial complex.

Keywords:complete differential graded Lie algebra, Maurer-Cartan element, rational homotopy theory
Category:16E45

2. CMB Online first

Ding, Fan; Geiges, Hansjörg; Zhang, Guangjian
On subcritically Stein fillable 5-manifolds
We make some elementary observations concerning subcritically Stein fillable contact structures on $5$-manifolds. Specifically, we determine the diffeomorphism type of such contact manifolds in the case the fundamental group is finite cyclic, and we show that on the $5$-sphere the standard contact structure is the unique subcritically fillable one. More generally, it is shown that subcritically fillable contact structures on simply connected $5$-manifolds are determined by their underlying almost contact structure. Along the way, we discuss the homotopy classification of almost contact structures.

Keywords:subcritically Stein fillable, 5-manifold, almost contact structure, thickening
Categories:53D35, 32Q28, 57M20, 57Q10, 57R17

3. CMB Online first

Bhuniya, Anjan Kumar; Hansda, Kalyan
On radicals of Green's relations in ordered semigroups
In this paper, we give a new definition of radicals of Green's relations in an ordered semigroup and characterize left regular (right regular), intra regular ordered semigroups by radicals of Green's relations. Also we characterize the ordered semigroups which are unions and complete semilattices of t-simple ordered semigroups.

Keywords:radical of Green's relation, intra regular ordered semigroup, left regular, t-simple ordered semigroup
Category:06F05

4. CMB Online first

Rousseau, C.
The Bifurcation Diagram of Cubic Polynomial Vector Fields on $\mathbb C\mathbb P^1$
In this paper we give the bifurcation diagram of the family of cubic vector fields $\dot z=z^3+ \epsilon_1z+\epsilon_0$ for $z\in \mathbb{C}\mathbb{P}^1$, depending on the values of $\epsilon_1,\epsilon_0\in\mathbb{C}$. The bifurcation diagram is in $\mathbb{R}^4$, but its conic structure allows describing it for parameter values in $\mathbb{S}^3$. There are two open simply connected regions of structurally stable vector fields separated by surfaces corresponding to bifurcations of homoclinic connections between two separatrices of the pole at infinity. These branch from the codimension 2 curve of double singular points. We also explain the bifurcation of homoclinic connection in terms of the description of Douady and Sentenac of polynomial vector fields.

Keywords:complex polynomial vector field, bifurcation diagram, Douady-Sentenac invariant
Categories:34M45, 32G34

5. CMB Online first

Friedl, Stefan; Vidussi, Stefano
Twisted Alexander invariants detect trivial links
It follows from earlier work of Silver--Williams and the authors that twisted Alexander polynomials detect the unknot and the Hopf link. We now show that twisted Alexander polynomials also detect the trefoil and the figure-8 knot, that twisted Alexander polynomials detect whether a link is split and that twisted Alexander modules detect trivial links. We use this result to provide algorithms for detecting whether a link is the unlink, whether it is split and whether it is totally split.

Keywords:twisted Alexander polynomial, virtual fibering theorem, unlink detection
Category:57M27

6. CMB Online first

Bahmanpour, Kamal; Naghipour, Reza
Faltings' finiteness dimension of local cohomology modules over local Cohen-Macaulay rings
Let $(R, \frak m)$ denote a local Cohen-Macaulay ring and $I$ a non-nilpotent ideal of $R$. The purpose of this article is to investigate Faltings' finiteness dimension $f_I(R)$ and equidimensionalness of certain homomorphic image of $R$. As a consequence we deduce that $f_I(R)=\operatorname{max}\{1, \operatorname{ht} I\}$ and if $\operatorname{mAss}_R(R/I)$ is contained in $\operatorname{Ass}_R(R)$, then the ring $R/ I+\cup_{n\geq 1}(0:_RI^n)$ is equidimensional of dimension $\dim R-1$. Moreover, we will obtain a lower bound for injective dimension of the local cohomology module $H^{\operatorname{ht} I}_I(R)$, in the case $(R, \frak m)$ is a complete equidimensional local ring.

Keywords:Cohen Macaulay ring, equidimensional ring, finiteness dimension, local cohomology
Categories:13D45, 14B15

7. CMB Online first

Li, Bao Qin
An Equivalent Form of Picard's Theorem and Beyond
This paper gives an equivalent form of Picard's theorem via entire solutions of the functional equation $f^2+g^2=1$, and then its improvements and applications to certain nonlinear (ordinary and partial) differential equations.

Keywords:entire function, Picard's Theorem, functional equation, partial differential equation
Categories:30D20, 32A15, 35F20

8. CMB Online first

Miranda-Neto, Cleto Brasileiro
A module-theoretic characterization of algebraic hypersurfaces
In this note we prove the following surprising characterization: if $X\subset {\mathbb A}^n$ is an (embedded, non-empty, proper) algebraic variety defined over a field $k$ of characteristic zero, then $X$ is a hypersurface if and only if the module $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ of logarithmic vector fields of $X$ is a reflexive ${\mathcal O}_{{\mathbb A}^n}$-module. As a consequence of this result, we derive that if $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ is a free ${\mathcal O}_{{\mathbb A}^n}$-module, which is shown to be equivalent to the freeness of the $t$th exterior power of $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ for some (in fact, any) $t\leq n$, then necessarily $X$ is a Saito free divisor.

Keywords:hypersurface, logarithmic vector field, logarithmic derivation, free divisor
Categories:14J70, 13N15, 32S22, 13C05, 13C10, 14N20, , , , , 14C20, 32M25

9. CMB Online first

Basu, Samik; Subhash, B
Topology of certain quotient spaces of Stiefel manifolds
We compute the cohomology of the right generalised projective Stiefel manifolds. Following this, we discuss some easy applications of the computations to the ranks of complementary bundles, and bounds on the span and immersibility.

Keywords:projective Stiefel manifold, span, spectral sequence
Categories:55R20, 55R25, 57R20

10. CMB Online first

Gilligan, Bruce
Levi's problem for pseudoconvex homogeneous manifolds
Suppose $G$ is a connected complex Lie group and $H$ is a closed complex subgroup. Then there exists a closed complex subgroup $J$ of $G$ containing $H$ such that the fibration $\pi:G/H \to G/J$ is the holomorphic reduction of $G/H$, i.e., $G/J$ is holomorphically separable and ${\mathcal O}(G/H) \cong \pi^*{\mathcal O}(G/J)$. In this paper we prove that if $G/H$ is pseudoconvex, i.e., if $G/H$ admits a continuous plurisubharmonic exhaustion function, then $G/J$ is Stein and $J/H$ has no non--constant holomorphic functions.

Keywords:complex homogeneous manifold, plurisubharmonic exhaustion function, holomorphic reduction, Stein manifold, Remmert reduction, Hirschowitz annihilator
Categories:32M10, 32U10, 32A10, 32Q28

11. CMB Online first

Motegi, Kimihiko; Teragaito, Masakazu
Generalized torsion elements and bi-orderability of 3-manifold groups
It is known that a bi-orderable group has no generalized torsion element, but the converse does not hold in general. We conjecture that the converse holds for the fundamental groups of $3$-manifolds, and verify the conjecture for non-hyperbolic, geometric $3$-manifolds. We also confirm the conjecture for some infinite families of closed hyperbolic $3$-manifolds. In the course of the proof, we prove that each standard generator of the Fibonacci group $F(2, m)$ ($m \gt 2$) is a generalized torsion element.

Keywords:generalized torsion element, bi-ordering, 3-manifold group
Categories:57M25, 57M05, 06F15, 20F05

12. CMB Online first

Lee, Tsiu-Kwen
Ad-nilpotent elements of semiprime rings with involution
Let $R$ be an $n!$-torsion free semiprime ring with involution $*$ and with extended centroid $C$, where $n\gt 1$ is a positive integer. We characterize $a\in K$, the Lie algebra of skew elements in $R$, satisfying $(\operatorname{ad}_a)^n=0$ on $K$. This generalizes both Martindale and Miers' theorem and the theorem of Brox et al. To prove it we first prove that if $a, b\in R$ satisfy $(\operatorname{ad}_a)^n=\operatorname{ad}_b$ on $R$, where either $n$ is even or $b=0$, then $\big(a-\lambda\big)^{[\frac{n+1}{2}]}=0$ for some $\lambda\in C$.

Keywords:Semiprime ring, Lie algebra, Jordan algebra, faithful $f$-free, involution, skew (symmetric) element, ad-nilpotent element, Jordan element
Categories:16N60, 16W10, 17B60

13. CMB Online first

Bao, Guanlong; Göğüş, Nıhat Gökhan; Pouliasis, Stamatis
$\mathcal{Q}_p$ spaces and Dirichlet type spaces
In this paper, we show that the Möbius invariant function space $\mathcal {Q}_p$ can be generated by variant Dirichlet type spaces $\mathcal{D}_{\mu, p}$ induced by finite positive Borel measures $\mu$ on the open unit disk. A criterion for the equality between the space $\mathcal{D}_{\mu, p}$ and the usual Dirichlet type space $\mathcal {D}_p$ is given. We obtain a sufficient condition to construct different $\mathcal{D}_{\mu, p}$ spaces and we provide examples. We establish decomposition theorems for $\mathcal{D}_{\mu, p}$ spaces, and prove that the non-Hilbert space $\mathcal {Q}_p$ is equal to the intersection of Hilbert spaces $\mathcal{D}_{\mu, p}$. As an application of the relation between $\mathcal {Q}_p$ and $\mathcal{D}_{\mu, p}$ spaces, we also obtain that there exist different $\mathcal{D}_{\mu, p}$ spaces; this is a trick to prove the existence without constructing examples.

Keywords:$\mathcal {Q}_p$ space, Dirichlet type space, Möbius invariant function space
Categories:30H25, 31C25, 46E15

14. CMB Online first

Moslehian, Mohammad Sal; Zamani, Ali
Characterizations of operator Birkhoff--James orthogonality
In this paper, we obtain some characterizations of the (strong) Birkhoff--James orthogonality for elements of Hilbert $C^*$-modules and certain elements of $\mathbb{B}(\mathscr{H})$. Moreover, we obtain a kind of Pythagorean relation for bounded linear operators. In addition, for $T\in \mathbb{B}(\mathscr{H})$ we prove that if the norm attaining set $\mathbb{M}_T$ is a unit sphere of some finite dimensional subspace $\mathscr{H}_0$ of $\mathscr{H}$ and $\|T\|_{{{\mathscr{H}}_0}^\perp} \lt \|T\|$, then for every $S\in\mathbb{B}(\mathscr{H})$, $T$ is the strong Birkhoff--James orthogonal to $S$ if and only if there exists a unit vector $\xi\in {\mathscr{H}}_0$ such that $\|T\|\xi = |T|\xi$ and $S^*T\xi = 0$. Finally, we introduce a new type of approximate orthogonality and investigate this notion in the setting of inner product $C^*$-modules.

Keywords:Hilbert $C^*$-module, Birkhoff--James orthogonality, strong Birkhoff--James orthogonality, approximate orthogonality
Categories:46L05, 46L08, 46B20

15. CMB Online first

Le Fourn, Samuel
Nonvanishing of central values of $L$-functions of newforms in $S_2 (\Gamma_0 (dp^2))$ twisted by quadratic characters
We prove that for $d \in \{ 2,3,5,7,13 \}$ and $K$ a quadratic (or rational) field of discriminant $D$ and Dirichlet character $\chi$, if a prime $p$ is large enough compared to $D$, there is a newform $f \in S_2(\Gamma_0(dp^2))$ with sign $(+1)$ with respect to the Atkin-Lehner involution $w_{p^2}$ such that $L(f \otimes \chi,1) \neq 0$. This result is obtained through an estimate of a weighted sum of twists of $L$-functions which generalises a result of Ellenberg. It relies on the approximate functional equation for the $L$-functions $L(f \otimes \chi, \cdot)$ and a Petersson trace formula restricted to Atkin-Lehner eigenspaces. An application of this nonvanishing theorem will be given in terms of existence of rank zero quotients of some twisted jacobians, which generalises a result of Darmon and Merel.

Keywords:nonvanishing of $L$-functions of modular forms, Petersson trace formula, rank zero quotients of jacobians
Categories:14J15, 11F67

16. CMB Online first

Huang, Yanhe; Sottile, Frank; Zelenko, Igor
Injectivity of generalized Wronski maps
We study linear projections on Plücker space whose restriction to the Grassmannian is a non-trivial branched cover. When an automorphism of the Grassmannian preserves the fibers, we show that the Grassmannian is necessarily of $m$-dimensional linear subspaces in a symplectic vector space of dimension $2m$, and the linear map is the Lagrangian involution. The Wronski map for a self-adjoint linear differential operator and pole placement map for symmetric linear systems are natural examples.

Keywords:Wronski map, Plücker embedding, curves in Lagrangian Grassmannian, self-adjoint linear differential operator, symmetric linear control system, pole placement map
Categories:14M15, 34A30, 93B55

17. CMB Online first

Chen, Bin; Zhao, Lili
On a Yamabe type problem in Finsler geometry
In this paper, a new notion of scalar curvature for a Finsler metric $F$ is introduced, and two conformal invariants $Y(M,F)$ and $C(M,F)$ are defined. We prove that there exists a Finsler metric with constant scalar curvature in the conformal class of $F$ if the Cartan torsion of $F$ is sufficiently small and $Y(M,F)C(M,F)\lt Y(\mathbb{S}^n)$ where $Y(\mathbb{S}^n)$ is the Yamabe constant of the standard sphere.

Keywords:Finsler metric, scalar curvature, Yamabe problem
Categories:53C60, 58B20

18. CMB Online first

Liu, Zhongyun; Qin, Xiaorong; Wu, Nianci; Zhang, Yulin
The shifted classical circulant and skew circulant splitting iterative methods for Toeplitz matrices
It is known that every Toeplitz matrix $T$ enjoys a circulant and skew circulant splitting (denoted by CSCS) i.e., $T=C-S$ with $C$ a circulant matrix and $S$ a skew circulant matrix. Based on the variant of such a splitting (also referred to as CSCS), we first develop classical CSCS iterative methods and then introduce shifted CSCS iterative methods for solving hermitian positive definite Toeplitz systems in this paper. The convergence of each method is analyzed. Numerical experiments show that the classical CSCS iterative methods work slightly better than the Gauss-Seidel (GS) iterative methods if the CSCS is convergent, and that there is always a constant $\alpha$ such that the shifted CSCS iteration converges much faster than the Gauss-Seidel iteration, no matter whether the CSCS itself is convergent or not.

Keywords:Hermitian positive definite, CSCS splitting, Gauss-Seidel splitting, iterative method, Toeplitz matrix
Categories:15A23, 65F10, 65F15

19. CMB Online first

Sickel, Winfried; Yang, Dachun; Yuan, Wen; Zhuo, Ciqiang
Characterizations of Besov-Type and Triebel-Lizorkin-Type Spaces via Averages on Balls
Let $\ell\in\mathbb N$ and $\alpha\in (0,2\ell)$. In this article, the authors establish equivalent characterizations of Besov-type spaces, Triebel-Lizorkin-type spaces and Besov-Morrey spaces via the sequence $\{f-B_{\ell,2^{-k}}f\}_{k}$ consisting of the difference between $f$ and the ball average $B_{\ell,2^{-k}}f$. These results give a way to introduce Besov-type spaces, Triebel-Lizorkin-type spaces and Besov-Morrey spaces with any smoothness order on metric measure spaces. As special cases, the authors obtain a new characterization of Morrey-Sobolev spaces and $Q_\alpha$ spaces with $\alpha\in(0,1)$, which are of independent interest.

Keywords:Besov space, Triebel-Lizorkin space, ball average, Calderón reproducing formula
Categories:42B25, 46E35, 42B35

20. CMB Online first

Stoyanov, Luchezar
On Gibbs measures and spectra of Ruelle transfer operators
We prove a comprehensive version of the Ruelle-Perron-Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previous known estimates.

Keywords:subshift of finite type, Ruelle transfer operator, Gibbs measure
Categories:37A05, 37B10

21. CMB Online first

Liu, Li; Weng, Peixuan
Globally asymptotic stability of a delayed integro-differential equation with nonlocal diffusion
We study a population model with nonlocal diffusion, which is a delayed integro-differential equation with double nonlinearity and two integrable kernels. By comparison method and analytical technique, we obtain globally asymptotic stability of the zero solution and the positive equilibrium. The results obtained reveal that the globally asymptotic stability only depends on the property of nonlinearity. As application, an example for a population model with age structure is discussed at the end of the article.

Keywords:integro-differential equation, nonlocal diffusion, equilibrium, globally asymptotic stability, population model with age structure
Categories:45J05, 35K57, 92D25

22. CMB Online first

Tang, Xianhua
New super-quadratic conditions for asymptotically periodic Schrödinger equation
This paper is dedicated to studying the semilinear Schrödinger equation $$ \left\{ \begin{array}{ll} -\triangle u+V(x)u=f(x, u), \ \ \ \ x\in {\mathbf{R}}^{N}, \\ u\in H^{1}({\mathbf{R}}^{N}), \end{array} \right. $$ where $f$ is a superlinear, subcritical nonlinearity. It focuses on the case where $V(x)=V_0(x)+V_1(x)$, $V_0\in C(\mathbf{R}^N)$, $V_0(x)$ is 1-periodic in each of $x_1, x_2, \ldots, x_N$ and $\sup[\sigma(-\triangle +V_0)\cap (-\infty, 0)]\lt 0\lt \inf[\sigma(-\triangle +V_0)\cap (0, \infty)]$, $V_1\in C(\mathbf{R}^N)$ and $\lim_{|x|\to\infty}V_1(x)=0$. A new super-quadratic condition is obtained, which is weaker than some well known results.

Keywords:Schrödinger equation, superlinear, asymptotically periodic, ground state solutions of Nehari-Pankov type
Categories:35J20, 35J60

23. CMB 2016 (vol 60 pp. 165)

Morimoto, Masaharu
Cokernels of Homomorphisms from Burnside Rings to Inverse Limits
Let $G$ be a finite group and let $A(G)$ denote the Burnside ring of $G$. Then an inverse limit $L(G)$ of the groups $A(H)$ for proper subgroups $H$ of $G$ and a homomorphism ${\operatorname{res}}$ from $A(G)$ to $L(G)$ are obtained in a natural way. Let $Q(G)$ denote the cokernel of ${\operatorname{res}}$. For a prime $p$, let $N(p)$ be the minimal normal subgroup of $G$ such that the order of $G/N(p)$ is a power of $p$, possibly $1$. In this paper we prove that $Q(G)$ is isomorphic to the cartesian product of the groups $Q(G/N(p))$, where $p$ ranges over the primes dividing the order of $G$.

Keywords:Burnside ring, inverse limit, finite group
Categories:19A22, 57S17

24. CMB Online first

Jensen, Gerd; Pommerenke, Christian
On the structure of the Schild group in Relativity Theory
Alfred Schild has established conditions that Lorentz transformations map world-vectors $(ct,x,y,z)$ with integer coordinates onto vectors of the same kind. These transformations are called integral Lorentz transformations. The present paper contains supplements to our earlier work with a new focus on group theory. To relate the results to the familiar matrix group nomenclature we associate Lorentz transformations with matrices in $\mathrm{SL}(2,\mathbb{C})$. We consider the lattice of subgroups of the group originated in Schild's paper and obtain generating sets for the full group and its subgroups.

Keywords:Lorentz transformation, integer lattice, Gaussian integers, Schild group, subgroup
Categories:22E43, 20H99, 83A05

25. CMB Online first

Shravan Kumar, N.
Invariant means on a class of von Neumann Algebras related to Ultraspherical Hypergroups II
Let $K$ be an ultraspherical hypergroup associated to a locally compact group $G$ and a spherical projector $\pi$ and let $VN(K)$ denote the dual of the Fourier algebra $A(K)$ corresponding to $K.$ In this note, we show that the set of invariant means on $VN(K)$ is singleton if and only if $K$ is discrete. Here $K$ need not be second countable. We also study invariant means on the dual of the Fourier algebra $A_0(K),$ the closure of $A(K)$ in the $cb$-multiplier norm. Finally, we consider generalized translations and generalized invariant means.

Keywords:ultraspherical hypergroup, Fourier algebra, Fourier-Stieltjes algebra, invariant mean, generalized translation, generalized invariant mean
Categories:43A62, 46J10, 43A30, 20N20
Page
   1 2 3 4 ... 23    

© Canadian Mathematical Society, 2017 : https://cms.math.ca/