Expand all Collapse all | Results 1 - 25 of 440 |
1. CMB Online first
Isometries and Hermitian Operators on Zygmund Spaces In this paper we characterize the isometries of subspaces of the little Zygmund space. We show that the isometries of these spaces are surjective and represented as integral operators. We also show that all hermitian operators on these settings are bounded.
Keywords:Zygmund spaces, the little Zygmund space, Hermitian operators, surjective linear isometries, generators of one-parameter groups of surjective isometries Categories:46E15, 47B15, 47B38 |
2. CMB Online first
$L$-functions for Quadratic Characters and Annihilation of Motivic Cohomology Groups Let $n$ be a positive even integer, and let $F$ be a totally real
number field and $L$ be an abelian Galois extension which is totally
real or CM.
Fix a finite set $S$ of primes of $F$ containing the infinite primes
and all those which ramify in
$L$, and let $S_L$ denote the primes of $L$ lying above those in
$S$. Then $\mathcal{O}_L^S$ denotes the ring of $S_L$-integers of $L$.
Suppose that $\psi$ is a quadratic character of the Galois group of
$L$ over $F$. Under the assumption of the motivic Lichtenbaum
conjecture, we obtain a non-trivial annihilator of the motivic
cohomology group
$H_\mathcal{M}^2(\mathcal{O}_L^S,\mathbb{Z}(n))$ from the lead term of the Taylor series for the
$S$-modified Artin $L$-function $L_{L/F}^S(s,\psi)$ at $s=1-n$.
Keywords:motivic cohomology, regulator, Artin L-functions Categories:11R42, 11R70, 14F42, 19F27 |
3. CMB Online first
A Fixed Point Theorem and the Existence of a Haar Measure for Hypergroups Satisfying Conditions Related to Amenability |
A Fixed Point Theorem and the Existence of a Haar Measure for Hypergroups Satisfying Conditions Related to Amenability In this paper we present a fixed point property for amenable
hypergroups which is analogous to Rickert's fixed point theorem
for semigroups. It equates the existence of a left invariant
mean on the space of weakly right uniformly continuous functions
to the existence of a fixed point for any action of the hypergroup.
Using this fixed point property, a certain class of hypergroups
are shown to have a left Haar measure.
Keywords:invariant measure, Haar measure, hypergroup, amenability, function translations Categories:43A62, 43A05, 43A07 |
4. CMB Online first
The equivariant cohomology rings of Peterson varieties in all Lie types Let $G$ be a complex semisimple linear algebraic group and let
$Pet$ be the associated Peterson variety in the flag
variety $G/B$.
The main theorem of this note gives an efficient presentation
of the equivariant cohomology ring $H^*_S(Pet)$ of the
Peterson variety as a quotient of a polynomial ring by an ideal
$J$ generated by quadratic polynomials, in the spirit of the
Borel presentation of the cohomology of the flag variety. Here
the group $S \cong \mathbb{C}^*$ is a certain subgroup of a maximal
torus $T$ of $G$.
Our description of the ideal $J$ uses the Cartan matrix and is
uniform across Lie types. In our arguments we use the Monk formula
and Giambelli formula for the equivariant cohomology rings of
Peterson varieties for all Lie types, as obtained in the work
of Drellich. Our result generalizes a previous theorem of Fukukawa-Harada-Masuda,
which was only for Lie type $A$.
Keywords:equivariant cohomology, Peterson varieties, flag varieties, Monk formula, Giambelli formula Categories:55N91, 14N15 |
5. CMB Online first
Ricci Curvature Tensor and Non-Riemannian Quantities There are several notions of Ricci curvature tensor
in Finsler geometry and spray geometry. One of them is defined by the
Hessian of the well-known Ricci curvature.
In this paper we will introduce a new notion of Ricci curvature
tensor and discuss its relationship with the Ricci curvature and some
non-Riemannian quantities. By this Ricci curvature tensor, we shall
have a better understanding on these non-Riemannian quantities.
Keywords:Finsler metrics, sprays, Ricci curvature, non-Riemanian quantity Categories:53B40, 53C60 |
6. CMB Online first
On the Graph of Divisibility of an Integral Domain It is well known that the factorization properties of a domain are reflected
in the structure of its group of divisibility. The main theme of this paper
is to introduce a topological/graph-theoretic point of view to the current
understanding of factorization in integral domains. We also show that
connectedness properties in the graph and topological space give rise to a
generalization of atomicity.
Keywords:atomic, factorization, divisibility Categories:13F15, 13A05 |
7. CMB Online first
Characterizing Distinguished Pairs by Using Liftings of Irreducible Polynomials Let $v$ be a henselian valuation of any rank of a field
$K$ and $\overline{v}$ be the unique extension of $v$ to a
fixed algebraic closure $\overline{K}$ of $K$. In 2005, it was studied properties
of those pairs $(\theta,\alpha)$ of elements of $\overline{K}$
with $[K(\theta): K]\gt [K(\alpha): K]$ where $\alpha$ is an element
of smallest degree over $K$ such that
$$
\overline{v}(\theta-\alpha)=\sup\{\overline{v}(\theta-\beta)
|\ \beta\in \overline{K}, \ [K(\beta): K]\lt [K(\theta): K]\}.
$$
Such pairs are referred to as distinguished pairs.
We use the concept of liftings of irreducible polynomials to give a
different characterization of distinguished pairs.
Keywords:valued fields, non-Archimedean valued fields, irreducible polynomials Categories:12J10, 12J25, 12E05 |
8. CMB Online first
Countable dense homogeneity in powers of zero-dimensional definable spaces We show that, for a coanalytic subspace $X$ of $2^\omega$, the
countable dense homogeneity of $X^\omega$ is equivalent to $X$
being Polish. This strengthens a result of HruÅ¡Ã¡k and Zamora
AvilÃ©s. Then, inspired by results of HernÃ¡ndez-GutiÃ©rrez,
HruÅ¡Ã¡k and van Mill, using a technique of Medvedev, we
construct a non-Polish subspace $X$ of $2^\omega$ such that $X^\omega$
is countable dense homogeneous. This gives the first $\mathsf{ZFC}$ answer
to a question of HruÅ¡Ã¡k and Zamora AvilÃ©s. Furthermore,
since our example is consistently analytic, the equivalence result
mentioned above is sharp. Our results also answer a question
of Medini and Milovich. Finally, we show that if every countable
subset of a zero-dimensional separable metrizable space $X$ is
included in a Polish subspace of $X$ then $X^\omega$ is countable
dense homogeneous.
Keywords:countable dense homogeneous, infinite power, coanalytic, Polish, $\lambda'$-set Categories:54H05, 54G20, 54E52 |
9. CMB Online first
Plane Lorentzian and Fuchsian Hedgehogs Parts of the Brunn-Minkowski theory can be extended to hedgehogs, which are
envelopes of families of affine hyperplanes parametrized by their Gauss map.
F. Fillastre introduced Fuchsian convex bodies, which are the
closed convex sets of Lorentz-Minkowski space that are globally invariant
under the action of a Fuchsian group. In this paper, we undertake a study of
plane Lorentzian and Fuchsian hedgehogs. In particular, we prove the
Fuchsian analogues of classical geometrical inequalities (analogues which
are reversed as compared to classical ones).
Keywords:Fuchsian and Lorentzian hedgehogs, evolute, duality, convolution, reversed isoperimetric inequality, reversed Bonnesen inequality Categories:52A40, 52A55, 53A04, 53B30 |
10. CMB Online first
Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators |
Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators Let $A:=-(\nabla-i\vec{a})\cdot(\nabla-i\vec{a})+V$ be a
magnetic SchrÃ¶dinger operator on $\mathbb{R}^n$,
where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$
and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse
HÃ¶lder conditions.
Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that
$\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function,
$\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$
(the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index
$I(\varphi)\in(0,1]$. In this article, the authors prove that
second-order Riesz transforms $VA^{-1}$ and
$(\nabla-i\vec{a})^2A^{-1}$ are bounded from the
Musielak-Orlicz-Hardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$,
to the Musielak-Orlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors
establish the boundedness of $VA^{-1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some
maximal inequalities associated with $A$ in the scale of $H_{\varphi,
A}(\mathbb{R}^n)$ are obtained.
Keywords:Musielak-Orlicz-Hardy space, magnetic SchrÃ¶dinger operator, atom, second-order Riesz transform, maximal inequality Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30 |
11. CMB Online first
Spectral Flows of Dilations of Fredholm Operators Given an essentially unitary contraction and an arbitrary unitary
dilation of it, there is a naturally associated spectral flow which is
shown to be equal to the index of the operator. This result is
interpreted in terms of the $K$-theory of an associated mapping
cone. It is then extended to connect $\mathbb{Z}_2$ indices of odd symmetric
Fredholm operators to a $\mathbb{Z}_2$-valued spectral flow.
Keywords:spectral flow, Fredholm operators, Z2 indices Categories:19K56, 46L80 |
12. CMB Online first
On Finite Groups with Dismantlable Subgroup Lattices In this note we study the finite groups whose subgroup
lattices are dismantlable.
Keywords:finite groups, subgroup lattices, dismantlable lattices, planar lattices, crowns Categories:20D30, 20D60, 20E15 |
13. CMB Online first
Dihedral Groups of order $2p$ of Automorphisms of Compact Riemann Surfaces of Genus $p-1$ In this paper we prove that there is only one conjugacy class of
dihedral group of order $2p$ in the $2(p-1)\times 2(p-1)$ integral
symplectic group can be realized by an analytic automorphism
group
of compact connected Riemann surfaces of genus $p-1$. A pair of
representative generators of the realizable class is also given.
Keywords:dihedral group, automorphism group, Riemann surface, integral symplectic matrix, fundamental domain Categories:20H25, 57M60 |
14. CMB Online first
Connections between metric characterizations of superreflexivity and the Radon-NikodÃ½m property for dual Banach spaces |
Connections between metric characterizations of superreflexivity and the Radon-NikodÃ½m property for dual Banach spaces Johnson and Schechtman (2009)
characterized superreflexivity in terms of finite diamond graphs.
The present author characterized the Radon-NikodÃ½m property
(RNP) for dual spaces in terms of the infinite diamond. This
paper
is devoted to further study of relations between metric
characterizations of superreflexivity and the RNP for dual spaces.
The main result is that finite subsets of any set $M$ whose
embeddability characterizes the RNP for dual spaces, characterize
superreflexivity. It is also observed that the converse statement
does not hold, and that $M=\ell_2$ is a counterexample.
Keywords:Banach space, diamond graph, finite representability, metric characterization, Radon-NikodÃ½m property, superreflexivity Categories:46B85, 46B07, 46B22 |
15. CMB Online first
Weak arithmetic equivalence Inspired by the invariant of a number field given by its zeta
function, we define the notion of weak arithmetic equivalence and show
that under certain ramification hypotheses, this equivalence
determines the local root numbers of the number field. This is
analogous to a result of Rohrlich on the local root numbers of a
rational elliptic curve. Additionally, we prove that for tame
non-totally real number fields, the integral trace form is invariant
under arithmetic equivalence.
Keywords:arithmeticaly equivalent number fields, root numbers Categories:11R04, 11R42 |
16. CMB Online first
On the Generalized Auslander-Reiten Conjecture under Certain Ring Extensions We show under some conditions that a Gorenstein ring $R$ satisfies the
Generalized Auslander-Reiten Conjecture if and only if so does
$R[x]$. When $R$ is a local ring we prove the same result for some
localizations of $R[x]$.
Keywords:Auslander-Reiten conjecture, finitistic extension degree, Gorenstein rings Categories:13D07, 16E30, 16E65 |
17. CMB Online first
Injective Tauberian Operators on $L_1$ and Operators with Dense Range on $\ell_\infty$ There exist injective Tauberian operators on $L_1(0,1)$ that have
dense, nonclosed range. This gives injective, nonsurjective
operators on $\ell_\infty$ that have dense range. Consequently, there
are two quasi-complementary, noncomplementary subspaces of
$\ell_\infty$ that are isometric to $\ell_\infty$.
Keywords:$L_1$, Tauberian operator, $\ell_\infty$ Categories:46E30, 46B08, 47A53 |
18. CMB Online first
Telescoping estimates for smooth series We derive telescoping majorants and minorants for some classes
of series and give applications of these results.
Keywords:telescoping series, Stietjes constant, Hardy's formula, Stirling's formula Categories:26D15, 40A25, 97I30 |
19. CMB Online first
Homological Planes in the Grothendieck Ring of Varieties In this note, we identify, in the Grothendieck group of complex
varieties $K_0(\mathrm Var_\mathbf{C})$, the classes of $\mathbf{Q}$-homological
planes. Precisely, we prove that a connected smooth affine complex
algebraic surface $X$ is a $\mathbf{Q}$-homological plane if
and only if $[X]=[\mathbf{A}^2_\mathbf{C}]$ in the ring $K_0(\mathrm Var_\mathbf{C})$
and $\mathrm{Pic}(X)_\mathbf{Q}:=\mathrm{Pic}(X)\otimes_\mathbf{Z}\mathbf{Q}=0$.
Keywords:motivic nearby cycles, motivic Milnor fiber, nearby motives Categories:14E05, 14R10 |
20. CMB Online first
Corrigendum to "Chen Inequalities for Submanifolds of Real Space Forms with a Semi-symmetric Non-metric Connection" |
Corrigendum to "Chen Inequalities for Submanifolds of Real Space Forms with a Semi-symmetric Non-metric Connection" We fix the coefficients in the inequality (4.1) in the Theorem 4.1(i) from
A. Mihai and C. ÃzgÃ¼r, "Chen inequalities for
submanifolds of real space forms with a semi-symmetric non-metric
connection" Canad. Math. Bull. 55 (2012), no. 3, 611-622.
Keywords:real space form, semi-symmetric non-metric connection, Ricci curvature Categories:53C40, 53B05, 53B15 |
21. CMB Online first
Periodic Solutions of Almost Linear Volterra Integro-dynamic Equation on Periodic Time Scales Using Krasnoselskii's fixed point theorem, we deduce
the existence of periodic solutions of nonlinear system of integro-dynamic
equations on periodic time scales. These equations are
studied under a set of assumptions on the functions involved
in the
equations. The equations will be called almost linear when these
assumptions hold. The results of this papers are new for the
continuous and discrete time scales.
Keywords:Volterra integro-dynamic equation, time scales, Krasnoselsii's fixed point theorem, periodic solution Categories:45J05, 45D05 |
22. CMB Online first
Some normal numbers generated by arithmetic functions Let $g \geq 2$. A real number is said to be $g$-normal if its base $g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let $\phi$ denote Euler's totient function, let $\sigma$ be the sum-of-divisors function, and let $\lambda$ be Carmichael's lambda-function. We show that if $f$ is any function formed by composing $\phi$, $\sigma$, or $\lambda$, then the number
\[ 0. f(1) f(2) f(3) \dots \]
obtained by concatenating the base $g$ digits of successive $f$-values is $g$-normal. We also prove the same result if the inputs $1, 2, 3, \dots$ are replaced with the primes $2, 3, 5, \dots$. The proof is an adaptation of a method introduced by Copeland and ErdÅs in 1946 to prove the $10$-normality of $0.235711131719\ldots$.
Keywords:normal number, Euler function, sum-of-divisors function, Carmichael lambda-function, Champernowne's number Categories:11K16, 11A63, 11N25, 11N37 |
23. CMB 2014 (vol 57 pp. 697)
On the Monodromy of Milnor Fibers of Hyperplane Arrangements We describe a general setting where the monodromy action on the first
cohomology group of the Milnor fiber of a hyperplane arrangement is
the identity.
Keywords:hyperplane arrangements, Milnor fiber, monodromy, local systems Categories:32S22, 32S55, 32S25, 32S40 |
24. CMB Online first
Correction to "Infinite Dimensional DeWitt Supergroups and Their Bodies" The Theorem below is a correction to Theorem
3.5 in the article
entitled " Infinite Dimensional DeWitt Supergroups and Their
Bodies" published
in Canad. Math. Bull. Vol. 57 (2) 2014 pp. 283-288. Only part
(iii) of that Theorem
requires correction. The proof of Theorem 3.5 in the original
article failed to separate
the proof of (ii) from the proof of (iii). The proof of (ii)
is complete once it is established
that $ad_a$ is quasi-nilpotent for each $a$ since it immediately
follows that $K$
is quasi-nilpotent. The proof of (iii) is not complete
in the original article. The revision appears as the proof of
(iii) of the revised Theorem below.
Keywords:super groups, body of super groups, Banach Lie groups Categories:58B25, 17B65, 81R10, 57P99 |
25. CMB Online first
On the Generalized Auslander-Reiten Conjecture under Certain Ring Extensions We show under some conditions that a Gorenstein ring $R$ satisfies the
Generalized Auslander-Reiten Conjecture if and only if so does
$R[x]$. When $R$ is a local ring we prove the same result for some
localizations of $R[x]$.
Keywords:Auslander-Reiten conjecture, finitistic extension degree, Gorenstein rings Categories:13D07, 16E30, 16E65 |