1. CMB Online first
 Yao, Hongliang

On Extensions of Stably Finite CAlgebras (II)
For any $C^*$algebra $A$ with an approximate
unit of projections, there is a smallest ideal $I$ of $A$ such
that the quotient $A/I$ is stably finite.
In this paper, a sufficient and necessary condition is obtained
for an ideal of a $C^*$algebra with real rank zero is this smallest
ideal by $K$theory.
Keywords:extension, stably finite C*algebra, index map Categories:46L05, 46L80 

2. CMB 2014 (vol 58 pp. 134)
3. CMB Online first
4. CMB 2013 (vol 57 pp. 254)
 Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
The unitary extension principle (UEP) by Ron and Shen yields a
sufficient condition for the construction of Parseval wavelet frames with
multiple generators. In this paper we characterize the UEPtype wavelet systems that
can be extended to a Parseval wavelet frame by adding just one UEPtype wavelet
system. We derive a condition that is necessary for the extension of a UEPtype
wavelet system to any Parseval wavelet frame with any number of generators, and
prove that this condition is also sufficient to ensure that an extension
with just two generators is possible.
Keywords:Bessel sequences, frames, extension of wavelet Bessel system to tight frame, wavelet systems, unitary extension principle Categories:42C15, 42C40 

5. CMB 2012 (vol 56 pp. 870)
 Wei, Changguo

Note on Kasparov Product of $C^*$algebra Extensions
Using the Dadarlat isomorphism, we give a characterization for the
Kasparov product of $C^*$algebra extensions. A certain relation
between $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ is also considered when
$B$ is not stable and it is proved that $KK(A, \mathcal q(B))$ and
$KK(A, \mathcal q(\mathcal k B))$ are not isomorphic in general.
Keywords:extension, Kasparov product, $KK$group Category:46L80 

6. CMB 2011 (vol 56 pp. 116)
 Krepski, Derek

Central Extensions of Loop Groups and Obstruction to PreQuantization
An explicit construction of a prequantum line bundle for the moduli
space of flat $G$bundles over a Riemann surface is given, where $G$
is any nonsimply connected compact simple Lie group. This work helps
to explain a curious coincidence previously observed between
Toledano Laredo's work classifying central extensions of loop groups
$LG$ and the author's previous work on the obstruction to
prequantization of the moduli space of flat $G$bundles.
Keywords:loop group, central extension, prequantization Categories:53D, 22E 

7. CMB 2011 (vol 55 pp. 821)
 PerezGarcia, C.; Schikhof, W. H.

New Examples of NonArchimedean Banach Spaces and Applications
The study carried out in this paper about some new examples of
Banach spaces, consisting of certain valued fields extensions, is
a typical nonarchimedean feature. We determine whether these
extensions are of countable type, have $t$orthogonal bases, or are
reflexive.
As an application we construct, for a class of base fields, a norm
$\\cdot\$ on $c_0$, equivalent to the canonical supremum norm,
without nonzero vectors that are $\\cdot\$orthogonal and such
that there is a multiplication on $c_0$ making $(c_0,\\cdot\)$
into a valued field.
Keywords:nonarchimedean Banach spaces, valued field extensions, spaces of countable type, orthogonal bases Categories:46S10, 12J25 

8. CMB 2007 (vol 50 pp. 588)
 Labute, John; Lemire, Nicole; Mináč, Ján; Swallow, John

Cohomological Dimension and Schreier's Formula in Galois Cohomology
Let $p$ be a prime and $F$ a field containing a primitive $p$th
root of unity. Then for $n\in \N$, the cohomological dimension
of the maximal pro$p$quotient $G$ of the absolute Galois group
of $F$ is at most $n$ if and only if the corestriction maps
$H^n(H,\Fp) \to H^n(G,\Fp)$ are surjective for all open
subgroups $H$ of index $p$. Using this result, we generalize
Schreier's formula for $\dim_{\Fp} H^1(H,\Fp)$ to $\dim_{\Fp}
H^n(H,\Fp)$.
Keywords:cohomological dimension, Schreier's formula, Galois theory, $p$extensions, pro$p$groups Categories:12G05, 12G10 

9. CMB 2007 (vol 50 pp. 268)
 Manuilov, V.; Thomsen, K.

On the Lack of Inverses to $C^*$Extensions Related to Property T Groups
Using ideas of S. Wassermann on nonexact $C^*$algebras and
property T groups, we show that one of his examples of noninvertible
$C^*$extensions is not semiinvertible. To prove this, we
show that a certain element vanishes in the asymptotic tensor
product. We also show that a modification of the example gives
a $C^*$extension which is not even invertible up to homotopy.
Keywords:$C^*$algebra extension, property T group, asymptotic tensor $C^*$norm, homotopy Categories:19K33, 46L06, 46L80, 20F99 

10. CMB 2005 (vol 48 pp. 500)
 Baracco, Luca

Extension of Holomorphic Functions From One Side of a Hypersurface
We give a new proof of former results by G. Zampieri and the
author on extension of holomorphic
functions from one side $\Omega$ of a real hypersurface
$M$ of $\mathbb{C}^n$ in the presence of an
analytic disc tangent to $M$, attached to $\bar\Omega$
but not to $M$. Our method enables
us to weaken the regularity assumptions both
for the hypersurface and the disc.
Keywords:analytic discs, Poisson integral, holomorphic extension Categories:32D10, 32V25 

11. CMB 2004 (vol 47 pp. 191)
 Grätzer, G.; Schmidt, E. T.

Congruence Class Sizes in Finite Sectionally Complemented Lattices
The congruences of a finite sectionally complemented lattice $L$ are
not necessarily \emph{uniform} (any two congruence classes of a
congruence are of the same size). To measure how far a congruence
$\Theta$ of $L$ is from being uniform, we introduce $\Spec\Theta$, the
\emph{spectrum} of $\Theta$, the family of cardinalities of the
congruence classes of $\Theta$. A typical result of this paper
characterizes the spectrum $S = (m_j \mid j < n)$ of a nontrivial
congruence $\Theta$ with the following two properties:
\begin{enumerate}[$(S_2)$]
\item[$(S_1)$] $2 \leq n$ and $n \neq 3$.
\item[$(S_2)$] $2 \leq m_j$ and $m_j \neq 3$, for all $j
Keywords:congruence lattice, congruencepreserving extension Categories:06B10, 06B15 

12. CMB 2003 (vol 46 pp. 388)
 Lin, Huaxin

Tracially Quasidiagonal Extensions
It is known that a unital simple $C^*$algebra $A$ with tracial
topological rank zero has real rank zero. We show in this note that,
in general, there are unital $C^*$algebras with tracial topological
rank zero that have real rank other than zero.
Let $0\to J\to E\to A\to 0$ be a short exact sequence of
$C^*$algebras. Suppose that $J$ and $A$ have tracial topological
rank zero. It is known that $E$ has tracial topological rank zero
as a $C^*$algebra if and only if $E$ is tracially quasidiagonal
as an extension. We present an example of a tracially
quasidiagonal extension which is not quasidiagonal.
Keywords:tracially quasidiagonal extensions, tracial rank Categories:46L05, 46L80 

13. CMB 2001 (vol 44 pp. 266)
 Cencelj, M.; Dranishnikov, A. N.

Extension of Maps to Nilpotent Spaces
We show that every compactum has cohomological dimension $1$ with respect
to a finitely generated nilpotent group $G$ whenever it has cohomological
dimension $1$ with respect to the abelianization of $G$. This is applied
to the extension theory to obtain a cohomological dimension theory condition
for a finitedimensional compactum $X$ for extendability of every map from
a closed subset of $X$ into a nilpotent $\CW$complex $M$ with finitely
generated homotopy groups over all of $X$.
Keywords:cohomological dimension, extension of maps, nilpotent group, nilpotent space Categories:55M10, 55S36, 54C20, 54F45 

14. CMB 2000 (vol 43 pp. 208)
 Matoušková, Eva

Extensions of Continuous and Lipschitz Functions
We show a result slightly more general than the following. Let $K$
be a compact Hausdorff space, $F$ a closed subset of $K$, and $d$ a
lower semicontinuous metric on $K$. Then each continuous function
$f$ on $F$ which is Lipschitz in $d$ admits a continuous extension on
$K$ which is Lipschitz in $d$. The extension has the same supremum
norm and the same Lipschitz constant.
As a corollary we get that a Banach space $X$ is reflexive if and only
if each bounded, weakly continuous and norm Lipschitz function
defined on a weakly closed subset of $X$ admits a weakly continuous,
norm Lipschitz extension defined on the entire space $X$.
Keywords:extension, continous, Lipschitz, Banach space Categories:54C20, 46B10 

15. CMB 1999 (vol 42 pp. 335)
 Kim, Goansu; Tang, C. Y.

Cyclic Subgroup Separability of HNNExtensions with Cyclic Associated Subgroups
We derive a necessary and sufficient condition for HNNextensions
of cyclic subgroup separable groups with cyclic associated
subgroups to be cyclic subgroup separable. Applying this, we
explicitly characterize the residual finiteness and the cyclic
subgroup separability of HNNextensions of abelian groups with
cyclic associated subgroups. We also consider these residual
properties of HNNextensions of nilpotent groups with cyclic
associated subgroups.
Keywords:HNNextension, nilpotent groups, cyclic subgroup separable $(\pi_c)$, residually finite Categories:20E26, 20E06, 20F10 
