Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword exceptional sets

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2007 (vol 50 pp. 579)

Kot, Piotr
$p$-Radial Exceptional Sets and Conformal Mappings
For $p>0$ and for a given set $E$ of type $G_{\delta}$ in the boundary of the unit disc $\partial\mathbb D$ we construct a holomorphic function $f\in\mathbb O(\mathbb D)$ such that \[ \int_{\mathbb D\setminus[0,1]E}|ft|^{p}\,d\mathfrak{L}^{2}<\infty\] and\[ E=E^{p}(f)=\Bigl\{ z\in\partial\mathbb D:\int_{0}^{1}|f(tz)|^{p}\,dt=\infty\Bigr\} .\] In particular if a set $E$ has a measure equal to zero, then a function $f$ is constructed as integrable with power $p$ on the unit disc $\mathbb D$.

Keywords:boundary behaviour of holomorphic functions, exceptional sets
Categories:30B30, 30E25

2. CMB 2005 (vol 48 pp. 580)

Kot, Piotr
Exceptional Sets in Hartogs Domains
Assume that $\Omega$ is a Hartogs domain in $\mathbb{C}^{1+n}$, defined as $\Omega=\{(z,w)\in\mathbb{C}^{1+n}:|z|<\mu(w),w\in H\}$, where $H$ is an open set in $\mathbb{C}^{n}$ and $\mu$ is a continuous function with positive values in $H$ such that $-\ln\mu$ is a strongly plurisubharmonic function in $H$. Let $\Omega_{w}=\Omega\cap(\mathbb{C}\times\{w\})$. For a given set $E$ contained in $H$ of the type $G_{\delta}$ we construct a holomorphic function $f\in\mathbb{O}(\Omega)$ such that \[ E=\Bigl\{ w\in\mathbb{C}^{n}:\int_{\Omega_{w}}|f(\cdot\,,w)|^{2}\,d\mathfrak{L}^{2}=\infty\Bigr\}. \]

Keywords:boundary behaviour of holomorphic functions,, exceptional sets

© Canadian Mathematical Society, 2014 :