1. CMB Online first
2. CMB 2014 (vol 58 pp. 30)
 Chung, Jaeyoung

On an Exponential Functional Inequality and its Distributional Version
Let $G$ be a group and $\mathbb K=\mathbb C$ or $\mathbb
R$.
In this article, as a generalization of the result of Albert
and Baker,
we investigate the behavior of bounded
and unbounded functions $f\colon G\to \mathbb K$ satisfying the inequality
$
\Biglf
\Bigl(\sum_{k=1}^n x_k
\Bigr)\prod_{k=1}^n f(x_k)
\Bigr\le \phi(x_2, \dots, x_n),\quad \forall\, x_1, \dots,
x_n\in G,
$
where $\phi\colon G^{n1}\to [0, \infty)$. Also, as a distributional
version of the above inequality we consider the stability of
the functional equation
\begin{equation*}
u\circ S  \overbrace{u\otimes \cdots \otimes u}^{n\text {times}}=0,
\end{equation*}
where $u$ is a Schwartz distribution or Gelfand hyperfunction,
$\circ$ and $\otimes$ are the pullback and tensor product of
distributions, respectively, and $S(x_1, \dots, x_n)=x_1+ \dots
+x_n$.
Keywords:distribution, exponential functional equation, Gelfand hyperfunction, stability Categories:46F99, 39B82 

3. CMB 2011 (vol 56 pp. 265)
 Chen, Yichao; Mansour, Toufik; Zou, Qian

Embedding Distributions of Generalized Fan Graphs
Total embedding distributions have been known for a few classes of graphs.
Chen, Gross, and Rieper
computed it for necklaces, closeend ladders and cobblestone
paths. Kwak and Shim computed it for bouquets of circles and
dipoles. In this paper, a splitting theorem is generalized
and the embedding distributions of
generalized fan graphs are obtained.
Keywords:total embedding distribution, splitting theorem, generalized fan graphs Category:05C10 

4. CMB 2011 (vol 55 pp. 673)
 Aizenbud, Avraham; Gourevitch, Dmitry

Multiplicity Free Jacquet Modules
Let $F$ be a nonArchimedean local field or a finite field.
Let $n$ be a natural number and $k$ be $1$ or $2$.
Consider $G:=\operatorname{GL}_{n+k}(F)$ and let
$M:=\operatorname{GL}_n(F) \times \operatorname{GL}_k(F)\lt G$ be a maximal Levi subgroup.
Let $U\lt G$ be the corresponding unipotent subgroup and let $P=MU$ be the corresponding parabolic subgroup.
Let $J:=J_M^G: \mathcal{M}(G) \to \mathcal{M}(M)$ be the Jacquet functor, i.e., the functor of coinvariants with respect to $U$.
In this paper we prove that $J$ is a multiplicity free functor, i.e.,
$\dim \operatorname{Hom}_M(J(\pi),\rho)\leq 1$,
for any irreducible representations $\pi$ of $G$ and $\rho$ of $M$.
We adapt the classical method of Gelfand and Kazhdan, which proves the ``multiplicity free" property of certain representations to prove the ``multiplicity free" property of certain functors.
At the end we discuss whether other Jacquet functors are multiplicity free.
Keywords:multiplicity one, Gelfand pair, invariant distribution, finite group Categories:20G05, 20C30, 20C33, 46F10, 47A67 

5. CMB 2011 (vol 54 pp. 464)
 Hwang, TeaYuan; Hu, ChinYuan

A Characterization of the CompoundExponential Type Distributions
In this paper, a fixed point equation of the
compoundexponential type distributions is derived, and under some
regular conditions,
both the existence and uniqueness of
this fixed point equation are investigated.
A question posed by Pitman and Yor
can be partially answered by using our approach.
Keywords:fixed point equation, compoundexponential type distributions Categories:62E10, 60G50 

6. CMB 2009 (vol 53 pp. 206)
 Atçeken, Mehmet

SemiSlant Submanifolds of an Almost Paracontact Metric Manifold
In this paper, we define and study the geometry of semislant submanifolds of an almost paracontact metric manifold. We give some characterizations for a submanifold to be semislant submanifold to be semislant product and obtain integrability conditions for the distributions involved in the definition of a semislant submanifold.
Keywords:paracontact metric manifold, slant distribution, semislant submanifold, semislant product Categories:53C15, 53C25, 53C40 

7. CMB 2007 (vol 50 pp. 447)
 Śniatycki, Jędrzej

Generalizations of Frobenius' Theorem on Manifolds and Subcartesian Spaces
Let $\mathcal{F}$ be a family of vector fields on a manifold or a
subcartesian space spanning a distribution $D$. We prove that an orbit $O$
of $\mathcal{F}$ is an integral manifold of $D$ if $D$ is involutive on $O$
and it has constant rank on $O$. This result implies Frobenius' theorem, and
its various generalizations, on manifolds as well as on subcartesian spaces.
Keywords:differential spaces, generalized distributions, orbits, Frobenius' theorem, Sussmann's theorem Categories:58A30, 58A40 
