Expand all Collapse all | Results 26 - 33 of 33 |
26. CMB 2007 (vol 50 pp. 588)
Cohomological Dimension and Schreier's Formula in Galois Cohomology Let $p$ be a prime and $F$ a field containing a primitive $p$-th
root of unity. Then for $n\in \N$, the cohomological dimension
of the maximal pro-$p$-quotient $G$ of the absolute Galois group
of $F$ is at most $n$ if and only if the corestriction maps
$H^n(H,\Fp) \to H^n(G,\Fp)$ are surjective for all open
subgroups $H$ of index $p$. Using this result, we generalize
Schreier's formula for $\dim_{\Fp} H^1(H,\Fp)$ to $\dim_{\Fp}
H^n(H,\Fp)$.
Keywords:cohomological dimension, Schreier's formula, Galois theory, $p$-extensions, pro-$p$-groups Categories:12G05, 12G10 |
27. CMB 2006 (vol 49 pp. 247)
A Szpilrajn--Marczewski Type Theorem for Concentration Dimension on Polish Spaces Let $X$ be a Polish space.
We will prove that
$$
\dim_T X=\inf \{\dim_L X': X'\text{ is homeomorphic to
} X\},
$$
where $\dim_L X$ and $\dim_T X$ stand
for the concentration dimension and
the topological dimension of $X$, respectively.
Keywords:Hausdorff dimension, topological dimension, LÃ©vy concentration function, concentration dimension Categories:11K55, 28A78 |
28. CMB 2005 (vol 48 pp. 614)
On Finite-to-One Maps Let $f\colon X\to Y$ be a $\sigma$-perfect $k$-dimensional surjective
map of metrizable spaces such that $\dim Y\leq m$. It is shown that
for every positive integer $p$ with $ p\leq m+k+1$ there exists a
dense $G_{\delta}$-subset ${\mathcal H}(k,m,p)$ of $C(X,\uin^{k+p})$
with the source limitation topology such that each fiber of
$f\triangle g$, $g\in{\mathcal H}(k,m,p)$, contains at most
$\max\{k+m-p+2,1\}$ points. This result
provides a proof the following conjectures of
S. Bogatyi, V. Fedorchuk and J. van Mill.
Let $f\colon X\to Y$ be a $k$-dimensional map between compact
metric spaces with $\dim Y\leq m$. Then:
\begin{inparaenum}[\rm(1)]
\item there exists a map
$h\colon X\to\uin^{m+2k}$ such that $f\triangle h\colon X\to
Y\times\uin^{m+2k}$ is 2-to-one provided $k\geq 1$;
\item there exists a
map $h\colon X\to\uin^{m+k+1}$ such that $f\triangle h\colon X\to
Y\times\uin^{m+k+1}$ is $(k+1)$-to-one.
\end{inparaenum}
Keywords:finite-to-one maps, dimension, set-valued maps Categories:54F45, 55M10, 54C65 |
29. CMB 2005 (vol 48 pp. 340)
Short Geodesics of Unitaries in the $L^2$ Metric Let $\M$ be a type II$_1$ von Neumann algebra, $\tau$ a trace in $\M$,
and $\l2$ the GNS Hilbert space of $\tau$. We regard the unitary group
$U_\M$ as a subset of $\l2$ and characterize the shortest smooth
curves joining two fixed unitaries in the $L^2$ metric. As a
consequence of this we obtain that $U_\M$, though a complete (metric)
topological group, is not an embedded riemannian submanifold of $\l2$
Keywords:unitary group, short geodesics, infinite dimensional riemannian manifolds. Categories:46L51, 58B10, 58B25 |
30. CMB 2004 (vol 47 pp. 332)
Recurrent Geodesics in Flat Lorentz $3$-Manifolds Let $M$ be a complete flat Lorentz $3$-manifold $M$ with purely
hyperbolic holonomy $\Gamma$. Recurrent geodesic rays are completely
classified when $\Gamma$ is cyclic. This implies that for any pair of
periodic geodesics $\gamma_1$, $\gamma_2$, a unique geodesic forward
spirals towards $\gamma_1$ and backward spirals towards $\gamma_2$.
Keywords:geometric structures on low-dimensional manifolds, notions of recurrence Categories:57M50, 37B20 |
31. CMB 2001 (vol 44 pp. 266)
Extension of Maps to Nilpotent Spaces We show that every compactum has cohomological dimension $1$ with respect
to a finitely generated nilpotent group $G$ whenever it has cohomological
dimension $1$ with respect to the abelianization of $G$. This is applied
to the extension theory to obtain a cohomological dimension theory condition
for a finite-dimensional compactum $X$ for extendability of every map from
a closed subset of $X$ into a nilpotent $\CW$-complex $M$ with finitely
generated homotopy groups over all of $X$.
Keywords:cohomological dimension, extension of maps, nilpotent group, nilpotent space Categories:55M10, 55S36, 54C20, 54F45 |
32. CMB 2001 (vol 44 pp. 80)
Constructing Compacta of Different Extensional Dimensions Applying the Sullivan conjecture we construct compacta of certain
cohomological and extensional dimensions.
Keywords:cohomological dimension, Eilenberg-MacLane complexes, Sullivan conjecture Categories:55M10, 54F45, 55U20 |
33. CMB 1997 (vol 40 pp. 47)
A universal coefficient decomposition for subgroups induced by submodules of group algebras Dimension subgroups and Lie dimension subgroups are known to satisfy a
`universal coefficient decomposition', {\it i.e.} their value with respect to
an arbitrary coefficient ring can be described in terms of their values with
respect to the `universal' coefficient rings given by the cyclic groups of
infinite and prime power order. Here this fact is generalized to much more
general types of induced subgroups, notably covering Fox subgroups and
relative dimension subgroups with respect to group algebra filtrations
induced by arbitrary $N$-series, as well as certain common generalisations
of these which occur in the study of the former. This result relies on an
extension of the principal universal coefficient decomposition theorem on
polynomial ideals (due to Passi, Parmenter and Seghal), to all additive
subgroups of group rings. This is possible by using homological instead
of ring theoretical methods.
Keywords:induced subgroups, group algebras, Fox subgroups, relative dimension, subgroups, polynomial ideals Categories:20C07, 16A27 |